我们提供安全,免费的手游软件下载!

安卓手机游戏下载_安卓手机软件下载_安卓手机应用免费下载-先锋下载

当前位置: 主页 > 软件教程 > 软件教程

搞定了 6 种分布式ID,分库分表哪个适合做主键?

来源:网络 更新时间:2024-04-18 15:30:50

大家好,我是小富~

本文是《ShardingSphere5.x分库分表原理与实战》系列的第 篇,目前系列的前几篇制作成了 PDF ,需要的可以在文末获取下载方式,持续更新中。今天咱们继续一起来探究下,分布式ID在分库分表中起到的作用以及如何使用, ShardingSphere-jdbc 中已经为我们提供了多种分布式主键ID生成策略。接下来将分别介绍这些策略的优缺点,看看它们在实际应用中的场景和效果。

                                                    小富的技术站:https://xiaofucode.com

为什么用分布式主键ID

在传统的单库单表结构时,通常可以使用自增主键来保证数据的唯一性。但在分库分表的情况下,每个表的默认自增步长为1,这导致了各个库、表之间可能存在重叠的主键范围,从而使得主键字段失去了其唯一性的意义。

为了解决这一问题,我们需要引入专门的分布式 ID 生成器来生成全局唯一的ID,并将其作为每条记录的主键,以确保全局唯一性。通过这种方式,我们能够有效地避免数据冲突和重复插入的问题,从而保障系统的正常运行。

除了满足唯一性的基本要求外,作为主键 ID,我们还需要关注主键字段的数据类型、长度对性能的影响。因为主键字段的 数据类型 长度 直接影响着数据库的查询效率和整体系统性能表现,这一点也是我们在选方案时需要考虑的因素。

内置算法

ShardingSphere 5.X 版本后进一步丰富了其框架内部的主键生成策略方案。此前仅提供了 UUID Snowflake 两种策略,现在又陆续提供了 NanoID CosId CosId-Snowflake 三种策略。下面我们将逐个的过一下。

注意 SQL中不要主动拼接主键字段(包括持久化工具自动拼接的)否则一律走默认的 Snowflake 策略!!!

ShardingSphere 中为分片表设置主键生成策略后,执行插入操作时,会自动在 SQL 中拼接配置的主键字段和生成的分布式ID值。所以,在创建分片表时 主键字段无需再设置 自增 AUTO_INCREMENT 。同时,在插入数据时应 避免为主键字段赋值 ,否则会覆盖主键策略生成的ID。

CREATE TABLE `t_order` (
  `id` bigint NOT NULL,
  `order_id` bigint NOT NULL,
  `user_id` bigint NOT NULL,
  `order_number` varchar(255) COLLATE utf8mb4_general_ci NOT NULL,
  `customer_id` bigint NOT NULL,
  `order_date` datetime DEFAULT NULL,
  `interval_value` varchar(125) COLLATE utf8mb4_general_ci DEFAULT NULL,
  `total_amount` decimal(10,2) NOT NULL,
  PRIMARY KEY (`order_id`) USING BTREE
) ;

UUID

想要获得一个具有唯一性的ID,大概率会先想到UUID,因为它不仅具有全球唯一的特性使用还简单。但并 不推荐 将其作为主键ID。

  • UUID的无序性。在插入新行数据后, InnoDB 无法像插入有序数据那样直接将新行追加到表尾,而是需要为新行寻找合适的位置来分配空间。由于ID无序,页分裂操作变得不可避免,导致大量数据的移动。频繁的页分裂会导致数据碎片化(即数据在物理存储上分散分布)。这种随机的ID分配过程需要大量的额外操作,导致频繁的对数据进行无序的访问,导致磁盘寻道时间增加。数据的无序性进一步加剧了数据碎片化,降低了数据访问效率。

  • UUID字符串类型。字符串比数字类型占用更多的存储空间,对存储和查询性能造成较大的消耗;字符串类型的长度可变,可变长度的数据行会破坏索引的连续性,导致索引查找性能下降。

算法类型:UUID

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # UUID生成算法
          uu-id-gen:
            type: UUID
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            database-strategy:  # 分库策略
              standard:
                sharding-column: order_id
                sharding-algorithm-name: t_order_database_mod
            table-strategy: # 分表策略
              standard:
                sharding-column: order_id
                sharding-algorithm-name: t_order_table_mod
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: uu-id-gen

NanoID

或许很多人都不熟悉 NanoID ,它是一款用类似 UUID 生成唯一标识符的轻量级库。不过,与 UUID 不同的是 NanoID 生成的字符串ID长度较短,仅为21位。但仍然不推荐将它作为主键ID,理由和UUID一样。

算法类型:NANOID

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # nanoid生成算法
          nanoid-gen:
            type: NANOID
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: nanoid-gen

定制雪花算法

雪花算法是比较主流的分布式ID生成方案,在 ShardingSphere 中的 Snowflake 算法生成的是 Long 类型的 ID,通常作为 默认的主键生成策略 使用。

内置的雪花算法生成的ID主要由 时间戳 、工作机器ID workId 、序列号 sequence 三部分组成。

@Override
  public synchronized Long generateKey() {
      ..........
      return ((currentMilliseconds - EPOCH) << TIMESTAMP_LEFT_SHIFT_BITS) | (getWorkerId() << WORKER_ID_LEFT_SHIFT_BITS) | sequence;
  }

定制 Snowflake 算法有三个可配置的属性:

worker-id :工作机器唯一标识,单机模式下会直接取此属性值计算ID,默认是0;集群模式下则由系统自动生成,此属性无效

max-vibration-offset :最大抖动上限值,范围 [0, 4096) ,默认是1。那么如何理解这个属性呢?
这个属性是用来控制上边生成雪花ID中的 sequence 。通过限制抖动范围,同一毫秒内生成的ID中引入微小的变化,让数据更均匀地分散到不同的分片上。

private void vibrateSequenceOffset() {
    sequenceOffset = sequenceOffset >= maxVibrationOffset ? 0 : sequenceOffset + 1;
}

若使用此算法生成值作分片值,建议配置此属性。此算法在不同毫秒内所生成的 key 取模 2^n (2^n一般为分库或分表数) 之后结果总为 0 或 1。为防止上述分片问题,建议将此属性值配置为 (2^n)-1

max-tolerate-time-difference-milliseconds :最大容忍时钟回退时间(毫秒)。服务器在校对时间时可能会发生时钟回拨的情况(当前时间回退),由于根据时间戳参与计算ID,这可能导致生成相同的ID,而这对系统来说是不可接受的。

ShardingSphere 雪花算法针对时钟回拨场景进行了处理,记录最后一次生成ID的时间 lastMilliseconds ,并与回拨后的当前时间 currentMilliseconds 进行比对。如果时间差超过了设置的最大容忍时钟回退时间,系统将直接抛出异常;如果未超过,则系统会休眠等待两者时间差的时长, 核心原则确保不会发放重复的ID

@SneakyThrows(InterruptedException.class)
private boolean waitTolerateTimeDifferenceIfNeed(final long currentMilliseconds) {
    if (lastMilliseconds <= currentMilliseconds) {
        return false;
    }
    long timeDifferenceMilliseconds = lastMilliseconds - currentMilliseconds;
    Preconditions.checkState(timeDifferenceMilliseconds < maxTolerateTimeDifferenceMilliseconds,
            "Clock is moving backwards, last time is %d milliseconds, current time is %d milliseconds", lastMilliseconds, currentMilliseconds);
    Thread.sleep(timeDifferenceMilliseconds);
    return true;
}

算法类型:SNOWFLAKE

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # 雪花ID生成算法
          snowflake-gen:
            type: SNOWFLAKE
            props:
              worker-id: # 工作机器唯一标识
              max-vibration-offset: 1024 # 最大抖动上限值,范围[0, 4096)。注:若使用此算法生成值作分片值,建议配置此属性。此算法在不同毫秒内所生成的 key 取模 2^n (2^n一般为分库或分表数) 之后结果总为 0 或 1。为防止上述分片问题,建议将此属性值配置为 (2^n)-1
              max-tolerate-time-difference-milliseconds: 10 # 最大容忍时钟回退时间,单位:毫秒
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: snowflake-gen

CosId

CosId 是一个高性能的分布式ID生成器框架,Shardingsphere 将其引入到自身的框架内,只简单的使用了 CosId 算法。 但目前亲测 5.2.0版本该算法处于不可用状态!!!我已经给官方提了issue,看看他们咋回复吧

CosId 框架内提供了 3 种算法:

  • SnowflakeId : 单机 TPS 性能:409W/s , 主要解决时钟回拨问题 、机器号分配问题并且提供更加友好、灵活的使用体验。
  • SegmentId : 每次获取一段 (Step) ID,来降低号段分发器的网络IO请求频次提升性能,提供多种存储后端:关系型数据库、Redis、Zookeeper 供用户选择。
  • SegmentChainId ( 推荐 ): SegmentChainId (lock-free) 是对 SegmentId 的增强。性能可达到近似 AtomicLong 的 TPS 性能 12743W+/s。

该算法使用对外提供了两个属性:

  • id-name :ID 生成器名称。
  • as-string :是否生成字符串类型ID,将 long 类型 ID 转换成 62 进制 String 类型(Long.MAX_VALUE 最大字符串长度11位),并保证字符串 ID 有序性。

算法类型:COSID

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # COSID生成算法
          cosId-gen:
            type: COSID
            props:
              id-name: share
              as-string: false
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: cosId-gen

CosId-Snowflake

CosId-Snowflake 是 CosId 框架内提供的 Snowflake 算法,它的实现原理和上边的定制版雪花算法类似,ID主要也是由 时间戳 、工作机器ID、序列号 sequence 三部分组成。同样处理了时钟回拨等问题。

public synchronized long generate() {
    long currentTimestamp = this.getCurrentTime();
    if (currentTimestamp < this.lastTimestamp) {
        throw new ClockBackwardsException(this.lastTimestamp, currentTimestamp);
    } else {
        if (currentTimestamp > this.lastTimestamp && this.sequence >= this.sequenceResetThreshold) {
            this.sequence = 0L;
        }

        this.sequence = this.sequence + 1L & this.maxSequence;
        if (this.sequence == 0L) {
            currentTimestamp = this.nextTime();
        }

        this.lastTimestamp = currentTimestamp;
        long diffTimestamp = currentTimestamp - this.epoch;
        if (diffTimestamp > this.maxTimestamp) {
            throw new TimestampOverflowException(this.epoch, diffTimestamp, this.maxTimestamp);
        } else {
            return diffTimestamp << (int)this.timestampLeft | this.machineId << (int)this.machineLeft | this.sequence;
        }
    }
}

这个算法提供了两个属性:

  • epoch :固定的起始时间点,雪花ID算法的 epoch 变量值,默认值:1477929600000。用它的目的提高生成的ID的时间戳部分的可读性、稳定性和范围限制,使得生成的ID更加可靠和易于管理。
  • as-string :是否生成字符串类型ID,将 long 类型 ID 转换成 62 进制 String 类型(Long.MAX_VALUE 最大字符串长度11位),并保证字符串 ID 有序性。

算法类型:COSID_SNOWFLAKE

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # cosId-snowflake生成算法
          cosId-snowflake-gen:
            type: COSID_SNOWFLAKE
            props:
              epoch: 1477929600000
              as-string: false
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: cosId-snowflake-gen

自定义分布式主键

上边咱们介绍了 ShardingSphere 内提供的 5 种生成主键的ID算法,这些算法基本可以满足大部分的业务场景。不过,在某些情况下,我们可能会要求生成的ID具有特殊的含义或遵循特定的规则。ShardingSphere 也支持我们自定义生成主键ID,来满足定制的业务需求。

实现接口

要实现自定义的主键生成算法,首先需要实现 KeyGenerateAlgorithm 接口,并实现内部 4 个方法,
其中有两个方法比较关键:

  • getType() :我们自定义的算法类型,方便配置使用;
  • generateKey() :处理主键生成的核心逻辑,我们可以根据业务需求选择合适的主键生成算法,比如美团的 Leaf、滴滴的 TinyId 等。
@Data
@Slf4j
public class SequenceAlgorithms implements KeyGenerateAlgorithm {

    // 这个方法用于指定我们自定义的算法的类型。它会返回一个字符串,表示所使用算法的类型,方便在配置和识别时使用。
    @Override
    public String getType() {
        // 返回算法类型表示
        return "custom";
    }

    // 这是生成主键的核心逻辑所在。在这个方法内部,我们可以根据业务需求选择合适的主键生成算法,比如美团的Leaf、滴滴的TinyId等。这个方法的具体实现会根据所选算法的特点和要求来设计
    @Override
    public Comparable generateKey() {
        return null;
    }

    @Override
    public Properties getProps() {
        return null;
    }
    // 这个方法用于初始化主键生成算法所需的资源或配置
    @Override
    public void init(Properties properties) {
    }
}

在引入外部的分布式ID生成器时,应尽量遵循以下原则:

  • 全局唯一 :必须保证ID是全局性唯一的,基本要求
  • 高性能 :高可用低延时,ID生成响应要块,否则反倒会成为业务瓶颈
  • 高可用 :100%的可用性是骗人的,但是也要无限接近于100%的可用性
  • 好接入 :要秉着拿来即用的设计原则,在系统设计和实现上要尽可能的简单

SPI 注册

通过 SPI 方式加载我们自定义的主键算法,需要在 resource/META-INF/services 目录下创建一个文件,文件名为 org.apache.shardingsphere.sharding.spi.KeyGenerateAlgorithm ,并将我们自定义的主键算法的完整类路径放入文件内,每行一个。在系统启动时会自动加载到这个文件,读取其中的类路径,然后通过反射机制实例化对应的类,完成主键算法的注册和加载。

resource
    |_META-INF
        |_services
           |_org.apache.shardingsphere.sharding.spi.KeyGenerateAlgorithm

配置使用

上边完成了自定义算法的逻辑,使用上与其他的算法一致。只需将我们刚刚定义的算法类型 custom 配置上即可。

spring:
  shardingsphere:
    rules:
      sharding:
        key-generators:  # 分布式序列算法配置
          # 自定义ID生成策略
          xiaofu-id-gen:
            type: custom
        tables:
          t_order:  # 逻辑表名称
            actual-data-nodes: db$->{0..1}.t_order_${0..2} # 数据节点:数据库.分片表
            key-generate-strategy: # 分布式主键生成策略
              column: id
              keyGeneratorName: xiaofu-id-gen

当执行插入操作时,debug 看已经进入到了定义的主键算法内了。

总结

我们介绍了 ShardingSphere 的几种内置主键生成策略以及如何自定义主键生成策略,市面上还有许多优秀的分布式ID框架都可以整合进来,但具体选择何种策略还是要取决于自身的业务需求。关于分布式 ID 生成器,我曾经撰写过一篇 一口气说出 9种 分布式ID生成方式 ,详细介绍了多种生成器的优缺点,大家可以作为参考。

案例GitHub地址 : https://github.com/chengxy-nds/Springboot-Notebook/tree/master/shardingsphere101/shardingsphere-sequence-algorithm