我们提供安全,免费的手游软件下载!

安卓手机游戏下载_安卓手机软件下载_安卓手机应用免费下载-先锋下载

当前位置: 主页 > 软件教程 > 软件教程

文章重构:论文《将卷积设计融入视觉Transformer》的深度学习

来源:网络 更新时间:2024-05-23 15:31:28

论文提出CeiT混合网络,结合了CNN在提取低维特征方面的局部性优势以及Transformer在建立长距离依赖关系方面的优势。CeiT在ImageNet和各种下游任务中达到了SOTA,收敛速度更快,而且不需要大量的预训练数据和额外的CNN蒸馏监督,值得借鉴

来源:晓飞的算法工程笔记 公众号

论文: Incorporating Convolution Designs into Visual Transformers

  • 论文地址: https://arxiv.org/abs/2103.11816

Introduction


在视觉领域中,纯Transformer架构往往需要大量的训练数据或额外的监督来达到与CNN相当的性能。为了克服这些限制,论文对直接使用Transformer架构的潜在缺点进行了分析,发现Transformer主要缺乏了CNN的平移不变性以及局部性。于是,论文将CNN在提取低维特征方面的局部性优势以及Transformer在建立长距离依赖关系方面的优势进行结合,提出了Convolution-enhanced image Transformer(CeiT)混合网络。

论文对原生Transformer做了三处修改:

  • 设计了Image-to-Tokens(I2T)模块,从生成的低维特征中提取token序列,而不是将原始输入图像直接分割成token序列。
  • 提出Locally-enchanced Feed-Forward(LeFF)层替换每个encoder中的feed-forward层,LeFF能够促进相邻token之间的相关性。
  • 在Transformer的顶部附加Layer-wise Class token Attention(LCA),能够综合多层特征作为最终输出。

在ImageNet和七个下游任务的实验结果表明,CeiT的性能和泛化能力比之前的Transformer和CNN更优,而且不需要大量的训练数据和额外的CNN蒸馏。此外,CeiT模型的收敛性更好,训练迭代次数减少了3倍,极大地降低了训练成本。

Methodology


Image-to-Tokens with Low-level Features

为了优化初始token序列的生成,论文提出了简单而有效的Imageto-Tokens(I2T)模块,从生成的低维特征中提取token序列,而不是将原始输入图像直接分割。如图2所示,I2T模块是由卷积层和最大池化层组成的轻量级stem结构,卷积层后面会进行BN操作。整个模块可表示为:

其中 \(x^{'}\in \mathbb{R}^{\frac{H}{S}\times \frac{W}{S}\times D}\) \(S\) 为卷积的stride参数, \(D\) 为卷积输出的通道数。

在得到输出特征图后,根据空间维度从中切割图像块序列。为了保持生成的标记数量与ViT一致,论文将图像块的分辨率缩减为 \((\frac{P}{S} ,\frac{P}{S})\) ,在实践中设定 \(S = 4\) 。最后,通过embedding操作将图像块序列转换为token序列。

I2T模块能够充分发挥CNN在提取低层次特征方面的优势,并且能够通过缩小图像块的大小来降低embedding的训练难度。与用ResNet-50来提取后两个阶段的高层特征的混合类型Transformer对比,I2T模块要轻量得多。

...以下省略