我们提供安全,免费的手游软件下载!

安卓手机游戏下载_安卓手机软件下载_安卓手机应用免费下载-先锋下载

当前位置: 主页 > 软件教程 > 软件教程

二进制安装Kubernetes(k8s)v1.30.1

来源:网络 更新时间:2024-05-27 04:31:24

二进制安装Kubernetes(k8s)v1.30.1

https://github.com/cby-chen/Kubernetes 开源不易,帮忙点个star,谢谢了

介绍

kubernetes(k8s)二进制高可用安装部署,支持IPv4+IPv6双栈。

我使用IPV6的目的是在公网进行访问,所以我配置了IPV6静态地址。

若您没有IPV6环境,或者不想使用IPv6,不对主机进行配置IPv6地址即可。

不配置IPV6,不影响后续,不过集群依旧是支持IPv6的。为后期留有扩展可能性。

若不要IPv6 ,不给网卡配置IPv6即可,不要对IPv6相关配置删除或操作,否则会出问题。

强烈建议在Github上查看文档 !!!

Github出问题会更新文档,并且后续尽可能第一时间更新新版本文档 !!!

手动项目地址: https://github.com/cby-chen/Kubernetes

1.环境

主机名称 IP地址 说明 软件
192.168.1.60 外网节点 下载各种所需安装包
Master01 192.168.1.41 master节点 kube-apiserver、kube-controller-manager、kube-scheduler、etcd、
kubelet、kube-proxy、nfs-client、haproxy、keepalived、nginx
Master02 192.168.1.42 master节点 kube-apiserver、kube-controller-manager、kube-scheduler、etcd、
kubelet、kube-proxy、nfs-client、haproxy、keepalived、nginx
Master03 192.168.1.43 master节点 kube-apiserver、kube-controller-manager、kube-scheduler、etcd、
kubelet、kube-proxy、nfs-client、haproxy、keepalived、nginx
Node01 192.168.1.44 node节点 kubelet、kube-proxy、nfs-client、nginx
Node02 192.168.1.45 node节点 kubelet、kube-proxy、nfs-client、nginx
192.168.1.46 VIP

网段
物理主机:192.168.1.0/24
service:10.96.0.0/12
pod:172.16.0.0/12

安装包已经整理好: https://mirrors.chenby.cn/https://github.com/cby-chen/Kubernetes/releases/download/v1.30.1/kubernetes-v1.30.1.tar

1.1.k8s基础系统环境配置

1.2.配置IP

# 注意!
# 若虚拟机是进行克隆的那么网卡的UUID会重复
# 若UUID重复需要重新生成新的UUID
# UUID重复无法获取到IPV6地址
# 克隆出来的虚拟机 CentOS系统需要删除DUID
rm -rf /etc/machine-id
systemd-machine-id-setup
reboot
# 
# 查看当前的网卡列表和 UUID:
# nmcli con show
# 删除要更改 UUID 的网络连接:
# nmcli con delete uuid <原 UUID>
# 重新生成 UUID:
# nmcli con add type ethernet ifname <接口名称> con-name <新名称>
# 重新启用网络连接:
# nmcli con up <新名称>

# 更改网卡的UUID
# 先配置静态IP之后使用ssh方式配置不断连
ssh root@192.168.1.41 "nmcli con delete uuid 8e8afb37-9cb4-362e-ba72-82568cb54312;nmcli con add type ethernet ifname ens18 con-name ens18;nmcli con up ens18"
ssh root@192.168.1.42 "nmcli con delete uuid 8e8afb37-9cb4-362e-ba72-82568cb54312;nmcli con add type ethernet ifname ens18 con-name ens18;nmcli con up ens18"
ssh root@192.168.1.43 "nmcli con delete uuid 8e8afb37-9cb4-362e-ba72-82568cb54312;nmcli con add type ethernet ifname ens18 con-name ens18;nmcli con up ens18"
ssh root@192.168.1.44 "nmcli con delete uuid 8e8afb37-9cb4-362e-ba72-82568cb54312;nmcli con add type ethernet ifname ens18 con-name ens18;nmcli con up ens18"
ssh root@192.168.1.45 "nmcli con delete uuid 8e8afb37-9cb4-362e-ba72-82568cb54312;nmcli con add type ethernet ifname ens18 con-name ens18;nmcli con up ens18"

# 参数解释
# 
# ssh ssh root@192.168.1.41
# 使用SSH登录到IP为192.168.1.41的主机,使用root用户身份。
# 
# nmcli con delete uuid 708a1497-2192-43a5-9f03-2ab936fb3c44
# 删除 UUID 为 708a1497-2192-43a5-9f03-2ab936fb3c44 的网络连接,这是 NetworkManager 中一种特定网络配置的唯一标识符。
# 
# nmcli con add type ethernet ifname ens18 con-name ens18
# 添加一种以太网连接类型,并指定接口名为 ens18,连接名称也为 ens18。
# 
# nmcli con up ens18
# 开启 ens18 这个网络连接。
# 
# 简单来说,这个命令的作用是删除一个特定的网络连接配置,并添加一个名为 ens18 的以太网连接,然后启用这个新的连接。

# 修改静态的IPv4地址
ssh root@192.168.1.158 "nmcli con mod ens18 ipv4.addresses 192.168.1.41/24; nmcli con mod ens18 ipv4.gateway  192.168.1.1; nmcli con mod ens18 ipv4.method manual; nmcli con mod ens18 ipv4.dns "8.8.8.8"; nmcli con up ens18"
ssh root@192.168.1.151 "nmcli con mod ens18 ipv4.addresses 192.168.1.42/24; nmcli con mod ens18 ipv4.gateway  192.168.1.1; nmcli con mod ens18 ipv4.method manual; nmcli con mod ens18 ipv4.dns "8.8.8.8"; nmcli con up ens18"
ssh root@192.168.1.152 "nmcli con mod ens18 ipv4.addresses 192.168.1.43/24; nmcli con mod ens18 ipv4.gateway  192.168.1.1; nmcli con mod ens18 ipv4.method manual; nmcli con mod ens18 ipv4.dns "8.8.8.8"; nmcli con up ens18"
ssh root@192.168.1.157 "nmcli con mod ens18 ipv4.addresses 192.168.1.44/24; nmcli con mod ens18 ipv4.gateway  192.168.1.1; nmcli con mod ens18 ipv4.method manual; nmcli con mod ens18 ipv4.dns "8.8.8.8"; nmcli con up ens18"
ssh root@192.168.1.155 "nmcli con mod ens18 ipv4.addresses 192.168.1.45/24; nmcli con mod ens18 ipv4.gateway  192.168.1.1; nmcli con mod ens18 ipv4.method manual; nmcli con mod ens18 ipv4.dns "8.8.8.8"; nmcli con up ens18"

# 参数解释
# 
# ssh root@192.168.1.154
# 使用SSH登录到IP为192.168.1.154的主机,使用root用户身份。
# 
# "nmcli con mod ens18 ipv4.addresses 192.168.1.41/24"
# 修改ens18网络连接的IPv4地址为192.168.1.41,子网掩码为 24。
# 
# "nmcli con mod ens18 ipv4.gateway 192.168.1.1"
# 修改ens18网络连接的IPv4网关为192.168.1.1。
# 
# "nmcli con mod ens18 ipv4.method manual"
# 将ens18网络连接的IPv4配置方法设置为手动。
# 
# "nmcli con mod ens18 ipv4.dns "8.8.8.8"
# 将ens18网络连接的IPv4 DNS服务器设置为 8.8.8.8。
# 
# "nmcli con up ens18"
# 启动ens18网络连接。
# 
# 总体来说,这条命令是通过SSH远程登录到指定的主机,并使用网络管理命令 (nmcli) 修改ens18网络连接的配置,包括IP地址、网关、配置方法和DNS服务器,并启动该网络连接。

# 没有IPv6选择不配置即可
ssh root@192.168.1.41 "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::10; nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1; nmcli con mod ens18 ipv6.method manual; nmcli con mod ens18 ipv6.dns "2400:3200::1"; nmcli con up ens18"
ssh root@192.168.1.42 "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::20; nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1; nmcli con mod ens18 ipv6.method manual; nmcli con mod ens18 ipv6.dns "2400:3200::1"; nmcli con up ens18"
ssh root@192.168.1.43 "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::30; nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1; nmcli con mod ens18 ipv6.method manual; nmcli con mod ens18 ipv6.dns "2400:3200::1"; nmcli con up ens18"
ssh root@192.168.1.44 "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::40; nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1; nmcli con mod ens18 ipv6.method manual; nmcli con mod ens18 ipv6.dns "2400:3200::1"; nmcli con up ens18"
ssh root@192.168.1.45 "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::50; nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1; nmcli con mod ens18 ipv6.method manual; nmcli con mod ens18 ipv6.dns "2400:3200::1"; nmcli con up ens18"

# 参数解释
# 
# ssh root@192.168.1.41
# 通过SSH连接到IP地址为192.168.1.41的远程主机,使用root用户进行登录。
# 
# "nmcli con mod ens18 ipv6.addresses fc00:43f4:1eea:1::10"
# 使用nmcli命令修改ens18接口的IPv6地址为fc00:43f4:1eea:1::10。
# 
# "nmcli con mod ens18 ipv6.gateway fc00:43f4:1eea:1::1"
# 使用nmcli命令修改ens18接口的IPv6网关为fc00:43f4:1eea:1::1。
# 
# "nmcli con mod ens18 ipv6.method manual"
# 使用nmcli命令将ens18接口的IPv6配置方法修改为手动配置。
# 
# "nmcli con mod ens18 ipv6.dns "2400:3200::1"
# 使用nmcli命令设置ens18接口的IPv6 DNS服务器为2400:3200::1。
# 
# "nmcli con up ens18"
# 使用nmcli命令启动ens18接口。
# 
# 这个命令的目的是在远程主机上配置ens18接口的IPv6地址、网关、配置方法和DNS服务器,并启动ens18接口。

# 查看网卡配置
# nmcli device show ens18
# nmcli con show ens18
[root@localhost ~]#  cat /etc/NetworkManager/system-connections/ens18.nmconnection 
[connection]
id=ens18
uuid=97445eea-70e8-47a7-8be4-a707de271f5e
type=ethernet
interface-name=ens18
timestamp=1716705021
[ethernet]
[ipv4]
address1=192.168.1.41/24,192.168.1.1
dns=8.8.8.8;
method=manual
[ipv6]
addr-gen-mode=default
method=auto
[proxy]
[root@localhost ~]# 

# 参数解释
# 1. `[connection]`:
#    - `id`: 连接的唯一标识符,用于内部引用。
#    - `uuid`: 连接的通用唯一标识符(UUID),确保在系统中的唯一性。
#    - `type`: 指定连接的类型,本例中为以太网。
#    - `interface-name`: 网络接口的名称(`ens18`),表示与此连接关联的物理或逻辑网络接口。
#    - `timestamp`: 时间戳,指示连接配置上次修改的时间。
# 2. `[ethernet]`:
#    - 通常包含以太网特定的配置设置,如MAC地址或链路速度。
# 3. `[ipv4]`:
#    - `address1`: 以CIDR表示法指定IPv4地址和子网掩码(`192.168.1.41/24`)。还包括网关IP(`192.168.1.1`)。
#    - `dns`: 指定要使用的DNS服务器(本例中为`8.8.8.8`),提供将域名转换为IP地址的手段。
#    - `method`: 指定获取IPv4地址的方法。在本例中,设置为手动,表示IP地址是静态配置的。
# 4. `[ipv6]`:
#    - `addr-gen-mode`: 指定IPv6地址生成模式。设置为默认,通常意味着地址是根据接口的MAC地址生成的。
#    - `method`: 指定获取IPv6地址的方法。在本例中,设置为自动,表示使用DHCPv6或SLAAC等协议进行自动配置。
# 5. `[proxy]`:
#    - 通常用于配置代理设置,如HTTP或SOCKS代理。

1.3.设置主机名

hostnamectl set-hostname k8s-master01
hostnamectl set-hostname k8s-master02
hostnamectl set-hostname k8s-master03
hostnamectl set-hostname k8s-node01
hostnamectl set-hostname k8s-node02

# 参数解释
# 
# 参数: set-hostname
# 解释: 这是hostnamectl命令的一个参数,用于设置系统的主机名。
# 
# 参数: k8s-master01
# 解释: 这是要设置的主机名,将系统的主机名设置为"k8s-master01"。

1.4.配置yum源

# 其他系统的源地址
# https://help.mirrors.cernet.edu.cn/

# 对于私有仓库
sed -e 's|^mirrorlist=|#mirrorlist=|g' -e 's|^#baseurl=http://mirror.centos.org/\$contentdir|baseurl=http://192.168.1.123/centos|g' -i.bak  /etc/yum.repos.d/CentOS-*.repo

# 对于 Ubuntu
sed -i 's/cn.archive.ubuntu.com/mirrors.ustc.edu.cn/g' /etc/apt/sources.list

# epel扩展源
sudo yum install -y epel-release
sudo sed -e 's!^metalink=!#metalink=!g' \
    -e 's!^#baseurl=!baseurl=!g' \
    -e 's!https\?://download\.fedoraproject\.org/pub/epel!https://mirror.nju.edu.cn/epel!g' \
    -e 's!https\?://download\.example/pub/epel!https://mirror.nju.edu.cn/epel!g' \
    -i /etc/yum.repos.d/epel{,-testing}.repo

# 对于 CentOS 7
sudo sed -e 's|^mirrorlist=|#mirrorlist=|g' \
         -e 's|^#baseurl=http://mirror.centos.org/centos|baseurl=https://mirror.nju.edu.cn/centos|g' \
         -i.bak \
         /etc/yum.repos.d/CentOS-*.repo

# 对于 CentOS 8
sudo sed -e 's|^mirrorlist=|#mirrorlist=|g' \
         -e 's|^#baseurl=http://mirror.centos.org/$contentdir|baseurl=https://mirror.nju.edu.cn/centos|g' \
         -i.bak \
         /etc/yum.repos.d/CentOS-*.repo

# 对于CentOS 9
cat <<'EOF' > /etc/yum.repos.d/centos.repo
[baseos]
name=CentOS Stream $releasever - BaseOS
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/BaseOS/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-baseos-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=1

[baseos-debuginfo]
name=CentOS Stream $releasever - BaseOS - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/BaseOS/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-baseos-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[baseos-source]
name=CentOS Stream $releasever - BaseOS - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/BaseOS/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-baseos-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[appstream]
name=CentOS Stream $releasever - AppStream
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/AppStream/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-appstream-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=1

[appstream-debuginfo]
name=CentOS Stream $releasever - AppStream - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/AppStream/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-appstream-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[appstream-source]
name=CentOS Stream $releasever - AppStream - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/AppStream/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-appstream-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[crb]
name=CentOS Stream $releasever - CRB
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/CRB/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-crb-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=1

[crb-debuginfo]
name=CentOS Stream $releasever - CRB - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/CRB/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-crb-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[crb-source]
name=CentOS Stream $releasever - CRB - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/CRB/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-crb-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0
EOF
cat <<'EOF' > /etc/yum.repos.d/centos-addons.repo
[highavailability]
name=CentOS Stream $releasever - HighAvailability
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/HighAvailability/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-highavailability-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=0

[highavailability-debuginfo]
name=CentOS Stream $releasever - HighAvailability - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/HighAvailability/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-highavailability-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[highavailability-source]
name=CentOS Stream $releasever - HighAvailability - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/HighAvailability/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-highavailability-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[nfv]
name=CentOS Stream $releasever - NFV
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/NFV/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-nfv-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=0

[nfv-debuginfo]
name=CentOS Stream $releasever - NFV - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/NFV/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-nfv-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[nfv-source]
name=CentOS Stream $releasever - NFV - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/NFV/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-nfv-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[rt]
name=CentOS Stream $releasever - RT
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/RT/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-rt-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=0

[rt-debuginfo]
name=CentOS Stream $releasever - RT - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/RT/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-rt-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[rt-source]
name=CentOS Stream $releasever - RT - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/RT/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-rt-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[resilientstorage]
name=CentOS Stream $releasever - ResilientStorage
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/ResilientStorage/$basearch/os
# metalink=https://mirrors.centos.org/metalink?repo=centos-resilientstorage-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=0

[resilientstorage-debuginfo]
name=CentOS Stream $releasever - ResilientStorage - Debug
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/ResilientStorage/$basearch/debug/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-resilientstorage-debug-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[resilientstorage-source]
name=CentOS Stream $releasever - ResilientStorage - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/$releasever-stream/ResilientStorage/source/tree/
# metalink=https://mirrors.centos.org/metalink?repo=centos-resilientstorage-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-centosofficial
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0

[extras-common]
name=CentOS Stream $releasever - Extras packages
baseurl=https://mirror.nju.edu.cn/centos-stream/SIGs/$releasever-stream/extras/$basearch/extras-common
# metalink=https://mirrors.centos.org/metalink?repo=centos-extras-sig-extras-common-$stream&arch=$basearch&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-Extras-SHA512
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
countme=1
enabled=1

[extras-common-source]
name=CentOS Stream $releasever - Extras packages - Source
baseurl=https://mirror.nju.edu.cn/centos-stream/SIGs/$releasever-stream/extras/source/extras-common
# metalink=https://mirrors.centos.org/metalink?repo=centos-extras-sig-extras-common-source-$stream&arch=source&protocol=https,http
gpgkey=file:///etc/pki/rpm-gpg/RPM-GPG-KEY-CentOS-SIG-Extras-SHA512
gpgcheck=1
repo_gpgcheck=0
metadata_expire=6h
enabled=0
EOF

1.5.安装一些必备工具

# 对于 Ubuntu
apt update && apt upgrade -y && apt install -y wget psmisc vim net-tools nfs-kernel-server telnet lvm2 git tar curl

# 对于 CentOS 7
yum update -y && yum -y install  wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git tar curl

# 对于 CentOS 8
yum update -y && yum -y install wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git network-scripts tar curl

# 对于 CentOS 9
yum update -y && yum -y install wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git tar curl

1.5.1 下载离线所需文件(可选)

在互联网服务器上安装一个一模一样的系统进行下载所需包

CentOS7
# 下载必要工具
yum -y install createrepo yum-utils wget epel*

# 下载全量依赖包
repotrack createrepo wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git tar curl gcc keepalived haproxy bash-completion chrony sshpass ipvsadm ipset sysstat conntrack libseccomp

# 删除libseccomp
rm -rf libseccomp-*.rpm

# 下载libseccomp
wget http://rpmfind.net/linux/centos/8-stream/BaseOS/x86_64/os/Packages/libseccomp-2.5.1-1.el8.x86_64.rpm

# 创建yum源信息
createrepo -u -d /data/centos7/

# 拷贝包到内网机器上
scp -r /data/centos7/ root@192.168.1.41:
scp -r /data/centos7/ root@192.168.1.42:
scp -r /data/centos7/ root@192.168.1.43:
scp -r /data/centos7/ root@192.168.1.44:
scp -r /data/centos7/ root@192.168.1.45:

# 在内网机器上创建repo配置文件
rm -rf /etc/yum.repos.d/*
cat > /etc/yum.repos.d/123.repo  << EOF 
[cby]
name=CentOS-$releasever - Media
baseurl=file:///root/centos7/
gpgcheck=0
enabled=1
EOF

# 安装下载好的包
yum clean all
yum makecache
yum install /root/centos7/* --skip-broken -y

#### 备注 #####
# 安装完成后,可能还会出现yum无法使用那么再次执行
rm -rf /etc/yum.repos.d/*
cat > /etc/yum.repos.d/123.repo  << EOF 
[cby]
name=CentOS-$releasever - Media
baseurl=file:///root/centos7/
gpgcheck=0
enabled=1
EOF
yum clean all
yum makecache
yum install /root/centos7/*.rpm --skip-broken -y

#### 备注 #####
# 安装 chrony 和 libseccomp
# yum install /root/centos7/libseccomp-2.5.1*.rpm -y
# yum install /root/centos7/chrony-*.rpm -y
CentOS8
# 下载必要工具
yum -y install createrepo yum-utils wget epel*

# 下载全量依赖包
repotrack wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git network-scripts tar curl gcc keepalived haproxy bash-completion chrony sshpass ipvsadm ipset sysstat conntrack libseccomp

# 创建yum源信息
createrepo -u -d /data/centos8/

# 拷贝包到内网机器上
scp -r centos8/ root@192.168.1.41:
scp -r centos8/ root@192.168.1.42:
scp -r centos8/ root@192.168.1.43:
scp -r centos8/ root@192.168.1.44:
scp -r centos8/ root@192.168.1.45:

# 在内网机器上创建repo配置文件
rm -rf /etc/yum.repos.d/*
cat > /etc/yum.repos.d/123.repo  << EOF 
[cby]
name=CentOS-$releasever - Media
baseurl=file:///root/centos8/
gpgcheck=0
enabled=1
EOF

# 安装下载好的包
yum clean all
yum makecache
yum install /root/centos8/* --skip-broken -y

#### 备注 #####
# 安装完成后,可能还会出现yum无法使用那么再次执行
rm -rf /etc/yum.repos.d/*
cat > /etc/yum.repos.d/123.repo  << EOF 
[cby]
name=CentOS-$releasever - Media
baseurl=file:///root/centos8/
gpgcheck=0
enabled=1
EOF
yum clean all
yum makecache
yum install /root/centos8/*.rpm --skip-broken -y
CentOS9
# 下载必要工具
yum -y install createrepo yum-utils wget epel*

# 下载全量依赖包
repotrack wget psmisc vim net-tools nfs-utils telnet yum-utils device-mapper-persistent-data lvm2 git tar curl gcc keepalived haproxy bash-completion chrony sshpass ipvsadm ipset sysstat conntrack libseccomp

# 创建yum源信息
createrepo -u -d centos9/

# 拷贝包到内网机器上
scp -r centos9/ root@192.168.1.41:
scp -r centos9/ root@192.168.1.42:
scp -r centos9/ root@192.168.1.43:
scp -r centos9/ root@192.168.1.44:
scp -r centos9/ root@192.168.1.45:

# 在内网机器上创建repo配置文件
rm -rf /etc/yum.repos.d/*
cat > /etc/yum.repos.d/123.repo  << EOF 
[cby]
name=CentOS-$releasever - Media
baseurl=file:///root/centos9/
gpgcheck=0
enabled=1
EOF

# 安装下载好的包
yum clean all
yum makecache
yum install /root/centos9/*.rpm --skip-broken -y
Ubuntu 下载包和依赖
#!/bin/bash

logfile=123.log
ret=""
function getDepends()
{
   echo "fileName is" $1>>$logfile
   # use tr to del < >
   ret=`apt-cache depends $1|grep Depends |cut -d: -f2 |tr -d "<>"`
   echo $ret|tee  -a $logfile
}
# 需要获取其所依赖包的包
libs="wget psmisc vim net-tools nfs-kernel-server telnet lvm2 git tar curl gcc keepalived haproxy bash-completion chrony sshpass ipvsadm ipset sysstat conntrack libseccomp"

# download libs dependen. deep in 3
i=0
while [ $i -lt 3 ] ;
do
    let i++
    echo $i
    # download libs
    newlist=" "
    for j in $libs
    do
        added="$(getDepends $j)"
        newlist="$newlist $added"
        apt install $added --reinstall -d -y
    done

    libs=$newlist
done

# 创建源信息
apt install dpkg-dev
sudo cp /var/cache/apt/archives/*.deb /data/ubuntu/ -r
dpkg-scanpackages . /dev/null |gzip > /data/ubuntu/Packages.gz -r

# 拷贝包到内网机器上
scp -r ubuntu/ root@192.168.1.41:
scp -r ubuntu/ root@192.168.1.42:
scp -r ubuntu/ root@192.168.1.43:
scp -r ubuntu/ root@192.168.1.44:
scp -r ubuntu/ root@192.168.1.45:

# 在内网机器上配置apt源
vim /etc/apt/sources.list
cat /etc/apt/sources.list
deb file:////root/ ubuntu/

# 安装deb包
apt install ./*.deb

1.6.选择性下载需要工具

#!/bin/bash

# 查看版本地址:
# 
# https://github.com/containernetworking/plugins/releases/
# https://github.com/containerd/containerd/releases/
# https://github.com/kubernetes-sigs/cri-tools/releases/
# https://github.com/Mirantis/cri-dockerd/releases/
# https://github.com/etcd-io/etcd/releases/
# https://github.com/cloudflare/cfssl/releases/
# https://github.com/kubernetes/kubernetes/tree/master/CHANGELOG
# https://download.docker.com/linux/static/stable/x86_64/
# https://github.com/opencontainers/runc/releases/
# https://mirrors.tuna.tsinghua.edu.cn/elrepo/kernel/el7/x86_64/RPMS/
# https://github.com/helm/helm/tags
# http://nginx.org/download/

# Version numbers
cni_plugins_version='v1.5.0'
cri_containerd_cni_version='1.7.17'
crictl_version='v1.30.0'
cri_dockerd_version='0.3.14'
etcd_version='v3.5.13'
cfssl_version='1.6.5'
kubernetes_server_version='1.30.1'
docker_version='26.1.3'
runc_version='1.1.12'
kernel_version='5.4.268'
helm_version='3.15.1'
nginx_version='1.26.0'

# URLs 
base_url='https://mirrors.chenby.cn/https://github.com'
kernel_url="http://mirrors.tuna.tsinghua.edu.cn/elrepo/kernel/el7/x86_64/RPMS/kernel-lt-${kernel_version}-1.el7.elrepo.x86_64.rpm"
runc_url="${base_url}/opencontainers/runc/releases/download/v${runc_version}/runc.amd64"
docker_url="https://mirrors.ustc.edu.cn/docker-ce/linux/static/stable/x86_64/docker-${docker_version}.tgz"
cni_plugins_url="${base_url}/containernetworking/plugins/releases/download/${cni_plugins_version}/cni-plugins-linux-amd64-${cni_plugins_version}.tgz"
cri_containerd_cni_url="${base_url}/containerd/containerd/releases/download/v${cri_containerd_cni_version}/cri-containerd-cni-${cri_containerd_cni_version}-linux-amd64.tar.gz"
crictl_url="${base_url}/kubernetes-sigs/cri-tools/releases/download/${crictl_version}/crictl-${crictl_version}-linux-amd64.tar.gz"
cri_dockerd_url="${base_url}/Mirantis/cri-dockerd/releases/download/v${cri_dockerd_version}/cri-dockerd-${cri_dockerd_version}.amd64.tgz"
etcd_url="${base_url}/etcd-io/etcd/releases/download/${etcd_version}/etcd-${etcd_version}-linux-amd64.tar.gz"
cfssl_url="${base_url}/cloudflare/cfssl/releases/download/v${cfssl_version}/cfssl_${cfssl_version}_linux_amd64"
cfssljson_url="${base_url}/cloudflare/cfssl/releases/download/v${cfssl_version}/cfssljson_${cfssl_version}_linux_amd64"
helm_url="https://mirrors.huaweicloud.com/helm/v${helm_version}/helm-v${helm_version}-linux-amd64.tar.gz"
kubernetes_server_url="https://storage.googleapis.com/kubernetes-release/release/v${kubernetes_server_version}/kubernetes-server-linux-amd64.tar.gz"
nginx_url="http://nginx.org/download/nginx-${nginx_version}.tar.gz"

# Download packages
packages=(
  # $kernel_url
  $runc_url
  $docker_url
  $cni_plugins_url
  $cri_containerd_cni_url
  $crictl_url
  $cri_dockerd_url
  $etcd_url
  $cfssl_url
  $cfssljson_url
  $helm_url
  $kubernetes_server_url
  $nginx_url
)

for package_url in "${packages[@]}"; do
  filename=$(basename "$package_url")
  if curl --parallel --parallel-immediate -k -L -C - -o "$filename" "$package_url"; then
    echo "Downloaded $filename"
  else
    echo "Failed to download $filename"
    exit 1
  fi
done

1.7.关闭防火墙

# Ubuntu忽略,CentOS执行
systemctl disable --now firewalld

1.8.关闭SELinux

# Ubuntu忽略,CentOS执行
setenforce 0
sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/selinux/config

# 参数解释
# 
# setenforce 0
# 此命令用于设置 SELinux 的执行模式。0 表示关闭 SELinux。
# 
# sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/selinux/config
# 该命令使用 sed 工具来编辑 /etc/selinux/config 文件。其中 '-i' 参数表示直接修改原文件,而不是输出到终端或另一个文件。's#SELINUX=enforcing#SELINUX=disabled#g' 是 sed 的替换命令,它将文件中所有的 "SELINUX=enforcing" 替换为 "SELINUX=disabled"。这里的 '#' 是分隔符,用于替代传统的 '/' 分隔符,以避免与路径中的 '/' 冲突。

1.9.关闭交换分区

sed -ri 's/.*swap.*/#&/' /etc/fstab
swapoff -a && sysctl -w vm.swappiness=0

cat /etc/fstab
# /dev/mapper/centos-swap swap                    swap    defaults        0 0


# 参数解释:
# 
# -ri: 这个参数用于在原文件中替换匹配的模式。-r表示扩展正则表达式,-i允许直接修改文件。
# 's/.*swap.*/#&/': 这是一个sed命令,用于在文件/etc/fstab中找到包含swap的行,并在行首添加#来注释掉该行。
# /etc/fstab: 这是一个文件路径,即/etc/fstab文件,用于存储文件系统表。
# swapoff -a: 这个命令用于关闭所有启用的交换分区。
# sysctl -w vm.swappiness=0: 这个命令用于修改vm.swappiness参数的值为0,表示系统在物理内存充足时更倾向于使用物理内存而非交换分区。

1.10.网络配置(俩种方式二选一)

# Ubuntu忽略,CentOS执行,CentOS9不支持方式一

# 方式一
# systemctl disable --now NetworkManager
# systemctl start network && systemctl enable network

# 方式二
cat > /etc/NetworkManager/conf.d/calico.conf << EOF 
[keyfile]
unmanaged-devices=interface-name:cali*;interface-name:tunl*
EOF
systemctl restart NetworkManager

# 参数解释
#
# 这个参数用于指定不由 NetworkManager 管理的设备。它由以下两个部分组成
# 
# interface-name:cali*
# 表示以 "cali" 开头的接口名称被排除在 NetworkManager 管理之外。例如,"cali0", "cali1" 等接口不受 NetworkManager 管理。
# 
# interface-name:tunl*
# 表示以 "tunl" 开头的接口名称被排除在 NetworkManager 管理之外。例如,"tunl0", "tunl1" 等接口不受 NetworkManager 管理。
# 
# 通过使用这个参数,可以将特定的接口排除在 NetworkManager 的管理范围之外,以便其他工具或进程可以独立地管理和配置这些接口。

1.11.进行时间同步

# 服务端
# apt install chrony -y
yum install chrony -y
cat > /etc/chrony.conf << EOF 
pool ntp.aliyun.com iburst
driftfile /var/lib/chrony/drift
makestep 1.0 3
rtcsync
allow 192.168.1.0/24
local stratum 10
keyfile /etc/chrony.keys
leapsectz right/UTC
logdir /var/log/chrony
EOF

systemctl restart chronyd ; systemctl enable chronyd

# 客户端
# apt install chrony -y
yum install chrony -y
cat > /etc/chrony.conf << EOF 
pool 192.168.1.41 iburst
driftfile /var/lib/chrony/drift
makestep 1.0 3
rtcsync
keyfile /etc/chrony.keys
leapsectz right/UTC
logdir /var/log/chrony
EOF

systemctl restart chronyd ; systemctl enable chronyd

#使用客户端进行验证
chronyc sources -v

# 参数解释
#
# pool ntp.aliyun.com iburst
# 指定使用ntp.aliyun.com作为时间服务器池,iburst选项表示在初始同步时会发送多个请求以加快同步速度。
# 
# driftfile /var/lib/chrony/drift
# 指定用于保存时钟漂移信息的文件路径。
# 
# makestep 1.0 3
# 设置当系统时间与服务器时间偏差大于1秒时,会以1秒的步长进行调整。如果偏差超过3秒,则立即进行时间调整。
# 
# rtcsync
# 启用硬件时钟同步功能,可以提高时钟的准确性。
# 
# allow 192.168.0.0/24
# 允许192.168.0.0/24网段范围内的主机与chrony进行时间同步。
# 
# local stratum 10
# 将本地时钟设为stratum 10,stratum值表示时钟的准确度,值越小表示准确度越高。
# 
# keyfile /etc/chrony.keys
# 指定使用的密钥文件路径,用于对时间同步进行身份验证。
# 
# leapsectz right/UTC
# 指定时区为UTC。
# 
# logdir /var/log/chrony
# 指定日志文件存放目录。

1.12.配置ulimit

ulimit -SHn 65535
cat >> /etc/security/limits.conf <

1.13.配置免密登录

# apt install -y sshpass
yum install -y sshpass
ssh-keygen -f /root/.ssh/id_rsa -P ''
export IP="192.168.1.41 192.168.1.42 192.168.1.43 192.168.1.44 192.168.1.45"
export SSHPASS=123123
for HOST in $IP;do
     sshpass -e ssh-copy-id -o StrictHostKeyChecking=no $HOST
done

# 这段脚本的作用是在一台机器上安装sshpass工具,并通过sshpass自动将本机的SSH公钥复制到多个远程主机上,以实现无需手动输入密码的SSH登录。
# 
# 具体解释如下:
# 
# 1. `apt install -y sshpass` 或 `yum install -y sshpass`:通过包管理器(apt或yum)安装sshpass工具,使得后续可以使用sshpass命令。
# 
# 2. `ssh-keygen -f /root/.ssh/id_rsa -P ''`:生成SSH密钥对。该命令会在/root/.ssh目录下生成私钥文件id_rsa和公钥文件id_rsa.pub,同时不设置密码(即-P参数后面为空),方便后续通过ssh-copy-id命令自动复制公钥。
# 
# 3. `export IP="192.168.1.41 192.168.1.42 192.168.1.43 192.168.1.44 192.168.1.45"`:设置一个包含多个远程主机IP地址的环境变量IP,用空格分隔开,表示要将SSH公钥复制到这些远程主机上。
# 
# 4. `export SSHPASS=123123`:设置环境变量SSHPASS,将sshpass所需的SSH密码(在这里是"123123")赋值给它,这样sshpass命令可以自动使用这个密码进行登录。
# 
# 5. `for HOST in $IP;do`:遍历环境变量IP中的每个IP地址,并将当前IP地址赋值给变量HOST。
# 
# 6. `sshpass -e ssh-copy-id -o StrictHostKeyChecking=no $HOST`:使用sshpass工具复制本机的SSH公钥到远程主机。其中,-e选项表示使用环境变量中的密码(即SSHPASS)进行登录,-o StrictHostKeyChecking=no选项表示连接时不检查远程主机的公钥,以避免交互式确认。
# 
# 通过这段脚本,可以方便地将本机的SSH公钥复制到多个远程主机上,实现无需手动输入密码的SSH登录。

1.14.添加启用源

# Ubuntu忽略,CentOS执行

# 为 RHEL-8或 CentOS-8配置源
yum install https://www.elrepo.org/elrepo-release-8.el8.elrepo.noarch.rpm -y 
sed -i "s@mirrorlist@#mirrorlist@g" /etc/yum.repos.d/elrepo.repo 
sed -i "s@elrepo.org/linux@mirrors.tuna.tsinghua.edu.cn/elrepo@g" /etc/yum.repos.d/elrepo.repo 

# 为 RHEL-7 SL-7 或 CentOS-7 安装 ELRepo 
yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm -y 
sed -i "s@mirrorlist@#mirrorlist@g" /etc/yum.repos.d/elrepo.repo 
sed -i "s@elrepo.org/linux@mirrors.tuna.tsinghua.edu.cn/elrepo@g" /etc/yum.repos.d/elrepo.repo 

# 查看可用安装包
yum  --disablerepo="*"  --enablerepo="elrepo-kernel"  list  available

1.15.升级内核至4.18版本以上

# Ubuntu忽略,CentOS执行

# 安装最新的内核
# 我这里选择的是稳定版kernel-ml   如需更新长期维护版本kernel-lt  
yum -y --enablerepo=elrepo-kernel  install  kernel-ml

# 查看已安装那些内核
rpm -qa | grep kernel

# 查看默认内核
grubby --default-kernel

# 若不是最新的使用命令设置
grubby --set-default $(ls /boot/vmlinuz-* | grep elrepo)

# 重启生效
reboot

# v8 整合命令为:
yum install https://www.elrepo.org/elrepo-release-8.el8.elrepo.noarch.rpm -y ; sed -i "s@mirrorlist@#mirrorlist@g" /etc/yum.repos.d/elrepo.repo ; sed -i "s@elrepo.org/linux@mirrors.tuna.tsinghua.edu.cn/elrepo@g" /etc/yum.repos.d/elrepo.repo ; yum  --disablerepo="*"  --enablerepo="elrepo-kernel"  list  available -y ; yum  --enablerepo=elrepo-kernel  install kernel-lt -y ; grubby --default-kernel ; reboot 

# v7 整合命令为:
yum install https://www.elrepo.org/elrepo-release-7.el7.elrepo.noarch.rpm -y ; sed -i "s@mirrorlist@#mirrorlist@g" /etc/yum.repos.d/elrepo.repo ; sed -i "s@elrepo.org/linux@mirrors.tuna.tsinghua.edu.cn/elrepo@g" /etc/yum.repos.d/elrepo.repo ; yum  --disablerepo="*"  --enablerepo="elrepo-kernel"  list  available -y ; yum  --enablerepo=elrepo-kernel  install  kernel-lt -y ; grubby --set-default $(ls /boot/vmlinuz-* | grep elrepo) ; grubby --default-kernel ; reboot 

# 离线版本 
yum install -y /root/cby/kernel-lt-*-1.el7.elrepo.x86_64.rpm ; grubby --set-default $(ls /boot/vmlinuz-* | grep elrepo) ; grubby --default-kernel ; reboot 

1.16.安装ipvsadm

# 对于CentOS7离线安装
# yum install /root/centos7/ipset-*.el7.x86_64.rpm /root/centos7/lm_sensors-libs-*.el7.x86_64.rpm  /root/centos7/ipset-libs-*.el7.x86_64.rpm /root/centos7/sysstat-*.el7_9.x86_64.rpm  /root/centos7/ipvsadm-*.el7.x86_64.rpm  -y

# 对于 Ubuntu
# apt install ipvsadm ipset sysstat conntrack -y

# 对于 CentOS
yum install ipvsadm ipset sysstat conntrack libseccomp -y
cat >> /etc/modules-load.d/ipvs.conf <

1.17.修改内核参数

cat < /etc/sysctl.d/k8s.conf
net.ipv4.ip_forward = 1
net.bridge.bridge-nf-call-iptables = 1
fs.may_detach_mounts = 1
vm.overcommit_memory=1
vm.panic_on_oom=0
fs.inotify.max_user_watches=89100
fs.file-max=52706963
fs.nr_open=52706963
net.netfilter.nf_conntrack_max=2310720

net.ipv4.tcp_keepalive_time = 600
net.ipv4.tcp_keepalive_probes = 3
net.ipv4.tcp_keepalive_intvl =15
net.ipv4.tcp_max_tw_buckets = 36000
net.ipv4.tcp_tw_reuse = 1
net.ipv4.tcp_max_orphans = 327680
net.ipv4.tcp_orphan_retries = 3
net.ipv4.tcp_syncookies = 1
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.ip_conntrack_max = 65536
net.ipv4.tcp_max_syn_backlog = 16384
net.ipv4.tcp_timestamps = 0
net.core.somaxconn = 16384

net.ipv6.conf.all.disable_ipv6 = 0
net.ipv6.conf.default.disable_ipv6 = 0
net.ipv6.conf.lo.disable_ipv6 = 0
net.ipv6.conf.all.forwarding = 1
EOF

sysctl --system

# 这些是Linux系统的一些参数设置,用于配置和优化网络、文件系统和虚拟内存等方面的功能。以下是每个参数的详细解释:
# 
# 1. net.ipv4.ip_forward = 1
#    - 这个参数启用了IPv4的IP转发功能,允许服务器作为网络路由器转发数据包。
# 
# 2. net.bridge.bridge-nf-call-iptables = 1
#    - 当使用网络桥接技术时,将数据包传递到iptables进行处理。
#   
# 3. fs.may_detach_mounts = 1
#    - 允许在挂载文件系统时,允许被其他进程使用。
#   
# 4. vm.overcommit_memory=1
#    - 该设置允许原始的内存过量分配策略,当系统的内存已经被完全使用时,系统仍然会分配额外的内存。
# 
# 5. vm.panic_on_oom=0
#    - 当系统内存不足(OOM)时,禁用系统崩溃和重启。
# 
# 6. fs.inotify.max_user_watches=89100
#    - 设置系统允许一个用户的inotify实例可以监控的文件数目的上限。
# 
# 7. fs.file-max=52706963
#    - 设置系统同时打开的文件数的上限。
# 
# 8. fs.nr_open=52706963
#    - 设置系统同时打开的文件描述符数的上限。
# 
# 9. net.netfilter.nf_conntrack_max=2310720
#    - 设置系统可以创建的网络连接跟踪表项的最大数量。
# 
# 10. net.ipv4.tcp_keepalive_time = 600
#     - 设置TCP套接字的空闲超时时间(秒),超过该时间没有活动数据时,内核会发送心跳包。
# 
# 11. net.ipv4.tcp_keepalive_probes = 3
#     - 设置未收到响应的TCP心跳探测次数。
# 
# 12. net.ipv4.tcp_keepalive_intvl = 15
#     - 设置TCP心跳探测的时间间隔(秒)。
# 
# 13. net.ipv4.tcp_max_tw_buckets = 36000
#     - 设置系统可以使用的TIME_WAIT套接字的最大数量。
# 
# 14. net.ipv4.tcp_tw_reuse = 1
#     - 启用TIME_WAIT套接字的重新利用,允许新的套接字使用旧的TIME_WAIT套接字。
# 
# 15. net.ipv4.tcp_max_orphans = 327680
#     - 设置系统可以同时存在的TCP套接字垃圾回收包裹数的最大数量。
# 
# 16. net.ipv4.tcp_orphan_retries = 3
#     - 设置系统对于孤立的TCP套接字的重试次数。
# 
# 17. net.ipv4.tcp_syncookies = 1
#     - 启用TCP SYN cookies保护,用于防止SYN洪泛攻击。
# 
# 18. net.ipv4.tcp_max_syn_backlog = 16384
#     - 设置新的TCP连接的半连接数(半连接队列)的最大长度。
# 
# 19. net.ipv4.ip_conntrack_max = 65536
#     - 设置系统可以创建的网络连接跟踪表项的最大数量。
# 
# 20. net.ipv4.tcp_timestamps = 0
#     - 关闭TCP时间戳功能,用于提供更好的安全性。
# 
# 21. net.core.somaxconn = 16384
#     - 设置系统核心层的连接队列的最大值。
# 
# 22. net.ipv6.conf.all.disable_ipv6 = 0
#     - 启用IPv6协议。
# 
# 23. net.ipv6.conf.default.disable_ipv6 = 0
#     - 启用IPv6协议。
# 
# 24. net.ipv6.conf.lo.disable_ipv6 = 0
#     - 启用IPv6协议。
# 
# 25. net.ipv6.conf.all.forwarding = 1
#     - 允许IPv6数据包转发。

1.18.所有节点配置hosts本地解析

cat > /etc/hosts <

2.k8s基本组件安装

注意 : 2.1 和 2.2 二选其一即可

2.1.安装Containerd作为Runtime (推荐)

# https://github.com/containernetworking/plugins/releases/
# wget https://mirrors.chenby.cn/https://github.com/containernetworking/plugins/releases/download/v1.4.0/cni-plugins-linux-amd64-v1.4.0.tgz

cd cby/

#创建cni插件所需目录
mkdir -p /etc/cni/net.d /opt/cni/bin 
#解压cni二进制包
tar xf cni-plugins-linux-amd64-v*.tgz -C /opt/cni/bin/

# https://github.com/containerd/containerd/releases/
# wget https://mirrors.chenby.cn/https://github.com/containerd/containerd/releases/download/v1.7.13/cri-containerd-cni-1.7.13-linux-amd64.tar.gz

#解压
tar -xzf cri-containerd-cni-*-linux-amd64.tar.gz -C /

#创建服务启动文件
cat > /etc/systemd/system/containerd.service <

2.1.1配置Containerd所需的模块

cat <

2.1.2加载模块

systemctl restart systemd-modules-load.service

# 参数解释:
# - `systemctl`: 是Linux系统管理服务的命令行工具,可以管理systemd init系统。
# - `restart`: 是systemctl命令的一个选项,用于重新启动服务。
# - `systemd-modules-load.service`: 是一个系统服务,用于加载内核模块。
# 
# 将上述参数结合在一起来解释`systemctl restart systemd-modules-load.service`的含义:
# 这个命令用于重新启动系统服务`systemd-modules-load.service`,它是负责加载内核模块的服务。在重新启动该服务后,系统会重新加载所有的内核模块。

2.1.3配置Containerd所需的内核

cat <

2.1.4创建Containerd的配置文件

# 参数解释:
# 
# 这段代码是用于修改并配置containerd的参数。
# 
# 1. 首先使用命令`mkdir -p /etc/containerd`创建/etc/containerd目录,如果该目录已存在,则不进行任何操作。
# 2. 使用命令`containerd config default | tee /etc/containerd/config.toml`创建默认配置文件,并将输出同时传递给/etc/containerd/config.toml文件。
# 3. 使用sed命令修改/etc/containerd/config.toml文件,将SystemdCgroup参数的值从false改为true。-i参数表示直接在原文件中进行编辑。
# 4. 使用cat命令结合grep命令查看/etc/containerd/config.toml文件中SystemdCgroup参数的值是否已修改为true。
# 5. 使用sed命令修改/etc/containerd/config.toml文件,将registry.k8s.io的地址替换为m.daocloud.io/registry.k8s.io。-i参数表示直接在原文件中进行编辑。
# 6. 使用cat命令结合grep命令查看/etc/containerd/config.toml文件中sandbox_image参数的值是否已修改为m.daocloud.io/registry.k8s.io。
# 7. 使用sed命令修改/etc/containerd/config.toml文件,将config_path参数的值从""改为"/etc/containerd/certs.d"。-i参数表示直接在原文件中进行编辑。
# 8. 使用cat命令结合grep命令查看/etc/containerd/config.toml文件中certs.d参数的值是否已修改为/etc/containerd/certs.d。
# 9. 使用mkdir命令创建/etc/containerd/certs.d/docker.io目录,如果目录已存在,则不进行任何操作。-p参数表示创建目录时,如果父级目录不存在,则自动创建父级目录。
# 
# 最后,使用cat重定向操作符将内容写入/etc/containerd/certs.d/docker.io/hosts.toml文件。该文件会配置加速器,其中server参数设置为"https://docker.io",host参数设置为"https://hub-mirror.c.163.com",并添加capabilities参数。

# 创建默认配置文件
mkdir -p /etc/containerd
containerd config default | tee /etc/containerd/config.toml

# 修改Containerd的配置文件
sed -i "s#SystemdCgroup\ \=\ false#SystemdCgroup\ \=\ true#g" /etc/containerd/config.toml
cat /etc/containerd/config.toml | grep SystemdCgroup
sed -i "s#registry.k8s.io#k8s.dockerproxy.com#g" /etc/containerd/config.toml
cat /etc/containerd/config.toml | grep sandbox_image
sed -i "s#config_path\ \=\ \"\"#config_path\ \=\ \"/etc/containerd/certs.d\"#g" /etc/containerd/config.toml
cat /etc/containerd/config.toml | grep certs.d

# 配置加速器
mkdir /etc/containerd/certs.d/docker.io -pv
cat > /etc/containerd/certs.d/docker.io/hosts.toml << EOF
server = "https://docker.io"
[host."https://dockerproxy.com"]
  capabilities = ["pull", "resolve"]
EOF

# 注意!
# SystemdCgroup参数是containerd中的一个配置参数,用于设置containerd在运行过程中使用的Cgroup(控制组)路径。Containerd使用SystemdCgroup参数来指定应该使用哪个Cgroup来跟踪和管理容器的资源使用。
# 
# Cgroup是Linux内核提供的一种资源隔离和管理机制,可以用于限制、分配和监控进程组的资源使用。使用Cgroup,可以将容器的资源限制和隔离,以防止容器之间的资源争用和不公平的竞争。
# 
# 通过设置SystemdCgroup参数,可以确保containerd能够找到正确的Cgroup路径,并正确地限制和隔离容器的资源使用,确保容器可以按照预期的方式运行。如果未正确设置SystemdCgroup参数,可能会导致容器无法正确地使用资源,或者无法保证资源的公平分配和隔离。
# 
# 总而言之,SystemdCgroup参数的作用是为了确保containerd能够正确地管理容器的资源使用,以实现资源的限制、隔离和公平分配。

2.1.5启动并设置为开机启动

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now containerd.service
# 启用并立即启动docker.service单元。docker.service是Docker守护进程的systemd服务单元。

systemctl stop containerd.service
# 停止运行中的docker.service单元,即停止Docker守护进程。

systemctl start containerd.service
# 启动docker.service单元,即启动Docker守护进程。

systemctl restart containerd.service
# 重启docker.service单元,即重新启动Docker守护进程。

systemctl status containerd.service
# 显示docker.service单元的当前状态,包括运行状态、是否启用等信息。

2.1.6配置crictl客户端连接的运行时位置

# https://github.com/kubernetes-sigs/cri-tools/releases/
# wget https://mirrors.chenby.cn/https://github.com/kubernetes-sigs/cri-tools/releases/download/v1.29.0/crictl-v1.29.0-linux-amd64.tar.gz

#解压
tar xf crictl-v*-linux-amd64.tar.gz -C /usr/bin/
#生成配置文件
cat > /etc/crictl.yaml <

2.2 安装docker作为Runtime

2.2.1 解压docker程序

# 二进制包下载地址:https://download.docker.com/linux/static/stable/x86_64/
# wget https://mirrors.ustc.edu.cn/docker-ce/linux/static/stable/x86_64/docker-25.0.3.tgz

#解压
tar xf docker-*.tgz 
#拷贝二进制文件
cp docker/* /usr/bin/

2.2.2 创建containerd的service文件

#创建containerd的service文件,并且启动
cat >/etc/systemd/system/containerd.service <

2.2.3 准备docker的service文件

#准备docker的service文件
cat > /etc/systemd/system/docker.service <

2.2.4 准备docker的socket文件

#准备docker的socket文件
cat > /etc/systemd/system/docker.socket <

2.2.5 配置加速器

# 配置加速器
mkdir /etc/docker/ -pv
cat >/etc/docker/daemon.json <

2.2.6 启动docker

groupadd docker
#创建docker组

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now docker.socket
# 启用并立即启动docker.socket单元。docker.socket是一个systemd的socket单元,用于接收来自网络的Docker API请求。

systemctl enable --now docker.service
# 启用并立即启动docker.service单元。docker.service是Docker守护进程的systemd服务单元。

systemctl stop docker.service
# 停止运行中的docker.service单元,即停止Docker守护进程。

systemctl start docker.service
# 启动docker.service单元,即启动Docker守护进程。

systemctl restart docker.service
# 重启docker.service单元,即重新启动Docker守护进程。

systemctl status docker.service
# 显示docker.service单元的当前状态,包括运行状态、是否启用等信息。

docker info
#验证

2.2.7 解压cri-docker

# 由于1.24以及更高版本不支持docker所以安装cri-docker
# 下载cri-docker 
# https://github.com/Mirantis/cri-dockerd/releases/
# wget  https://mirrors.chenby.cn/https://github.com/Mirantis/cri-dockerd/releases/download/v0.3.10/cri-dockerd-0.3.10.amd64.tgz

# 解压cri-docker
tar xvf cri-dockerd-*.amd64.tgz 
cp -r cri-dockerd/  /usr/bin/
chmod +x /usr/bin/cri-dockerd/cri-dockerd

2.2.8 写入启动cri-docker配置文件

# 写入启动配置文件
cat >  /usr/lib/systemd/system/cri-docker.service <

2.2.9 写入cri-docker的socket配置文件

# 写入socket配置文件
cat > /usr/lib/systemd/system/cri-docker.socket <

2.2.10 启动cri-docker

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now cri-docker.service
# 启用并立即启动cri-docker.service单元。cri-docker.service是cri-docker守护进程的systemd服务单元。

systemctl restart cri-docker.service
# 重启cri-docker.service单元,即重新启动cri-docker守护进程。

systemctl status docker.service
# 显示docker.service单元的当前状态,包括运行状态、是否启用等信息。

2.3.k8s与etcd下载及安装(仅在master01操作)

2.3.1解压k8s安装包

# 下载安装包
# wget https://mirrors.chenby.cn/https://github.com/etcd-io/etcd/releases/download/v3.5.12/etcd-v3.5.12-linux-amd64.tar.gz
# wget https://dl.k8s.io/v1.30.1/kubernetes-server-linux-amd64.tar.gz

# 解压k8s安装文件
cd cby
tar -xf kubernetes-server-linux-amd64.tar.gz  --strip-components=3 -C /usr/local/bin kubernetes/server/bin/kube{let,ctl,-apiserver,-controller-manager,-scheduler,-proxy}

# 这是一个tar命令,用于解压指定的kubernetes-server-linux-amd64.tar.gz文件,并将其中的特定文件提取到/usr/local/bin目录下。
# 
# 命令的解释如下:
# - tar:用于处理tar压缩文件的命令。
# - -xf:表示解压操作。
# - kubernetes-server-linux-amd64.tar.gz:要解压的文件名。
# - --strip-components=3:表示解压时忽略压缩文件中的前3级目录结构,提取文件时直接放到目标目录中。
# - -C /usr/local/bin:指定提取文件的目标目录为/usr/local/bin。
# - kubernetes/server/bin/kube{let,ctl,-apiserver,-controller-manager,-scheduler,-proxy}:要解压和提取的文件名模式,用花括号括起来表示模式中的多个可能的文件名。
# 
# 总的来说,这个命令的作用是将kubernetes-server-linux-amd64.tar.gz文件中的kubelet、kubectl、kube-apiserver、kube-controller-manager、kube-scheduler和kube-proxy六个文件提取到/usr/local/bin目录下,同时忽略文件路径中的前三级目录结构。


# 解压etcd安装文件
tar -xf etcd*.tar.gz && mv etcd-*/etcd /usr/local/bin/ && mv etcd-*/etcdctl /usr/local/bin/

# 这是一个将文件解压并移动到特定目录的命令。这是一个用于 Linux 系统中的命令。
# 
# - tar -xf etcd*.tar.gz:这个命令将解压以 etcd 开头并以.tar.gz 结尾的文件。`-xf` 是使用 `tar` 命令的选项,它表示解压文件并展开其中的内容。
# - mv etcd-*/etcd /usr/local/bin/:这个命令将 etcd 文件移动到 /usr/local/bin 目录。`mv` 是移动命令,它将 etcd-*/etcd 路径下的 etcd 文件移动到了 /usr/local/bin 目录。
# - mv etcd-*/etcdctl /usr/local/bin/:这个命令将 etcdctl 文件移动到 /usr/local/bin 目录,和上一条命令类似。
# 
# 总结起来,以上命令将从名为 etcd*.tar.gz 的压缩文件中解压出 etcd 和 etcdctl 文件,并将它们移动到 /usr/local/bin 目录中。

# 查看/usr/local/bin下内容
ll /usr/local/bin/
总用量 749524
-rwxr-xr-x. 1 root root    39035304  5月 17 05:57 containerd
-rwxr-xr-x. 1 root root     7176192  5月 17 05:57 containerd-shim
-rwxr-xr-x. 1 root root     8884224  5月 17 05:57 containerd-shim-runc-v1
-rwxr-xr-x. 1 root root    12169216  5月 17 05:57 containerd-shim-runc-v2
-rwxr-xr-x. 1 root root    17723392  5月 17 05:57 containerd-stress
-rwxr-xr-x. 1 root root    53362926  5月 17 05:58 crictl
-rwxr-xr-x. 1 root root    55511804  5月 17 05:58 critest
-rwxr-xr-x. 1 root root    26325112  5月 17 05:59 ctd-decoder
-rwxr-xr-x. 1 root root    18874368  5月 17 05:57 ctr
-rwxr-xr-x. 1 1000 docker  23146496  3月 30 02:28 etcd
-rwxr-xr-x. 1 1000 docker  17534976  3月 30 02:28 etcdctl
-rwxr-xr-x. 1 root root   112869528  5月 14 19:04 kube-apiserver
-rwxr-xr-x. 1 root root   107438232  5月 14 19:04 kube-controller-manager
-rwxr-xr-x. 1 root root    51454104  5月 14 19:04 kubectl
-rwxr-xr-x. 1 root root   100100024  5月 14 19:04 kubelet
-rwxr-xr-x. 1 root root    57577624  5月 14 19:04 kube-proxy
-rwxr-xr-x. 1 root root    58294424  5月 14 19:04 kube-scheduler

2.3.2查看版本

[root@k8s-master01 ~]#  kubelet --version
Kubernetes v1.30.1
[root@k8s-master01 ~]# etcdctl version
etcdctl version: 3.5.13
API version: 3.5
[root@k8s-master01 ~]# 

2.3.3将组件发送至其他k8s节点

Master='k8s-master02 k8s-master03'
Work='k8s-node01 k8s-node02'

# 拷贝master组件
for NODE in $Master; do echo $NODE; scp /usr/local/bin/kube{let,ctl,-apiserver,-controller-manager,-scheduler,-proxy} $NODE:/usr/local/bin/; scp /usr/local/bin/etcd* $NODE:/usr/local/bin/; done

# 该命令是一个for循环,对于在$Master变量中的每个节点,执行以下操作:
# 
# 1. 打印出节点的名称。
# 2. 使用scp命令将/usr/local/bin/kubelet、kubectl、kube-apiserver、kube-controller-manager、kube-scheduler和kube-proxy文件复制到节点的/usr/local/bin/目录下。
# 3. 使用scp命令将/usr/local/bin/etcd*文件复制到节点的/usr/local/bin/目录下。


# 拷贝work组件
for NODE in $Work; do echo $NODE; scp /usr/local/bin/kube{let,-proxy} $NODE:/usr/local/bin/ ; done
# 该命令是一个for循环,对于在$Master变量中的每个节点,执行以下操作:
# 
# 1. 打印出节点的名称。
# 2. 使用scp命令将/usr/local/bin/kubelet和kube-proxy文件复制到节点的/usr/local/bin/目录下。

# 所有节点执行
mkdir -p /opt/cni/bin

2.3创建证书相关文件

# 请查看Github仓库 或者进行获取已经打好的包
https://github.com/cby-chen/Kubernetes/
https://github.com/cby-chen/Kubernetes/tags
https://github.com/cby-chen/Kubernetes/releases/download/v1.30.1/kubernetes-v1.30.1.tar

3.相关证书生成

# master01节点下载证书生成工具
# wget "https://mirrors.chenby.cn/https://github.com/cloudflare/cfssl/releases/download/v1.6.4/cfssl_1.6.4_linux_amd64" -O /usr/local/bin/cfssl
# wget "https://mirrors.chenby.cn/https://github.com/cloudflare/cfssl/releases/download/v1.6.4/cfssljson_1.6.4_linux_amd64" -O /usr/local/bin/cfssljson

# 软件包内有
cp cfssl_*_linux_amd64 /usr/local/bin/cfssl
cp cfssljson_*_linux_amd64 /usr/local/bin/cfssljson

# 添加执行权限
chmod +x /usr/local/bin/cfssl /usr/local/bin/cfssljson

3.1.生成etcd证书

特别说明除外,以下操作在所有master节点操作

3.1.1所有master节点创建证书存放目录

mkdir /etc/etcd/ssl -p

3.1.2master01节点生成etcd证书

# 写入生成证书所需的配置文件
cat > ca-config.json << EOF 
{
  "signing": {
    "default": {
      "expiry": "876000h"
    },
    "profiles": {
      "kubernetes": {
        "usages": [
            "signing",
            "key encipherment",
            "server auth",
            "client auth"
        ],
        "expiry": "876000h"
      }
    }
  }
}
EOF
# 这段配置文件是用于配置加密和认证签名的一些参数。
# 
# 在这里,有两个部分:`signing`和`profiles`。
# 
# `signing`包含了默认签名配置和配置文件。
# 默认签名配置`default`指定了证书的过期时间为`876000h`。`876000h`表示证书有效期为100年。
# 
# `profiles`部分定义了不同的证书配置文件。
# 在这里,只有一个配置文件`kubernetes`。它包含了以下`usages`和过期时间`expiry`:
# 
# 1. `signing`:用于对其他证书进行签名
# 2. `key encipherment`:用于加密和解密传输数据
# 3. `server auth`:用于服务器身份验证
# 4. `client auth`:用于客户端身份验证
# 
# 对于`kubernetes`配置文件,证书的过期时间也是`876000h`,即100年。

cat > etcd-ca-csr.json  << EOF 
{
  "CN": "etcd",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "etcd",
      "OU": "Etcd Security"
    }
  ],
  "ca": {
    "expiry": "876000h"
  }
}
EOF
# 这是一个用于生成证书签名请求(Certificate Signing Request,CSR)的JSON配置文件。JSON配置文件指定了生成证书签名请求所需的数据。
# 
# - "CN": "etcd" 指定了希望生成的证书的CN字段(Common Name),即证书的主题,通常是该证书标识的实体的名称。
# - "key": {} 指定了生成证书所使用的密钥的配置信息。"algo": "rsa" 指定了密钥的算法为RSA,"size": 2048 指定了密钥的长度为2048位。
# - "names": [] 包含了生成证书时所需的实体信息。在这个例子中,只包含了一个实体,其相关信息如下:
#   - "C": "CN" 指定了实体的国家/地区代码,这里是中国。
#   - "ST": "Beijing" 指定了实体所在的省/州。
#   - "L": "Beijing" 指定了实体所在的城市。
#   - "O": "etcd" 指定了实体的组织名称。
#   - "OU": "Etcd Security" 指定了实体所属的组织单位。
# - "ca": {} 指定了生成证书时所需的CA(Certificate Authority)配置信息。
#   - "expiry": "876000h" 指定了证书的有效期,这里是876000小时。
# 
# 生成证书签名请求时,可以使用这个JSON配置文件作为输入,根据配置文件中的信息生成相应的CSR文件。然后,可以将CSR文件发送给CA进行签名,以获得有效的证书。

# 生成etcd证书和etcd证书的key(如果你觉得以后可能会扩容,可以在ip那多写几个预留出来)
# 若没有IPv6 可删除可保留 

cfssl gencert -initca etcd-ca-csr.json | cfssljson -bare /etc/etcd/ssl/etcd-ca
# 具体的解释如下:
# 
# cfssl是一个用于生成TLS/SSL证书的工具,它支持PKI、JSON格式配置文件以及与许多其他集成工具的配合使用。
# 
# gencert参数表示生成证书的操作。-initca参数表示初始化一个CA(证书颁发机构)。CA是用于签发其他证书的根证书。etcd-ca-csr.json是一个JSON格式的配置文件,其中包含了CA的详细信息,如私钥、公钥、有效期等。这个文件提供了生成CA证书所需的信息。
# 
# | 符号表示将上一个命令的输出作为下一个命令的输入。
# 
# cfssljson是cfssl工具的一个子命令,用于格式化cfssl生成的JSON数据。 -bare参数表示直接输出裸证书,即只生成证书文件,不包含其他格式的文件。/etc/etcd/ssl/etcd-ca是指定生成的证书文件的路径和名称。
# 
# 所以,这条命令的含义是使用cfssl工具根据配置文件ca-csr.json生成一个CA证书,并将证书文件保存在/etc/etcd/ssl/etcd-ca路径下。

cat > etcd-csr.json << EOF 
{
  "CN": "etcd",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "etcd",
      "OU": "Etcd Security"
    }
  ]
}
EOF
# 这段代码是一个JSON格式的配置文件,用于生成一个证书签名请求(Certificate Signing Request,CSR)。
# 
# 首先,"CN"字段指定了该证书的通用名称(Common Name),这里设为"etcd"。
# 
# 接下来,"key"字段指定了密钥的算法("algo"字段)和长度("size"字段),此处使用的是RSA算法,密钥长度为2048位。
# 
# 最后,"names"字段是一个数组,其中包含了一个名字对象,用于指定证书中的一些其他信息。这个名字对象包含了以下字段:
# - "C"字段指定了国家代码(Country),这里设置为"CN"。
# - "ST"字段指定了省份(State)或地区,这里设置为"Beijing"。
# - "L"字段指定了城市(Locality),这里设置为"Beijing"。
# - "O"字段指定了组织(Organization),这里设置为"etcd"。
# - "OU"字段指定了组织单元(Organizational Unit),这里设置为"Etcd Security"。
# 
# 这些字段将作为证书的一部分,用于标识和验证证书的使用范围和颁发者等信息。

cfssl gencert \
   -ca=/etc/etcd/ssl/etcd-ca.pem \
   -ca-key=/etc/etcd/ssl/etcd-ca-key.pem \
   -config=ca-config.json \
   -hostname=127.0.0.1,k8s-master01,k8s-master02,k8s-master03,192.168.1.41,192.168.1.42,192.168.1.43,fc00:43f4:1eea:1::10,fc00:43f4:1eea:1::20,fc00:43f4:1eea:1::30,::1 \
   -profile=kubernetes \
   etcd-csr.json | cfssljson -bare /etc/etcd/ssl/etcd
# 这是一条使用cfssl生成etcd证书的命令,下面是各个参数的解释:
# 
# -ca=/etc/etcd/ssl/etcd-ca.pem:指定用于签名etcd证书的CA文件的路径。
# -ca-key=/etc/etcd/ssl/etcd-ca-key.pem:指定用于签名etcd证书的CA私钥文件的路径。
# -config=ca-config.json:指定CA配置文件的路径,该文件定义了证书的有效期、加密算法等设置。
# -hostname=xxxx:指定要为etcd生成证书的主机名和IP地址列表。
# -profile=kubernetes:指定使用的证书配置文件,该文件定义了证书的用途和扩展属性。
# etcd-csr.json:指定etcd证书请求的JSON文件的路径,该文件包含了证书请求的详细信息。
# | cfssljson -bare /etc/etcd/ssl/etcd:通过管道将cfssl命令的输出传递给cfssljson命令,并使用-bare参数指定输出文件的前缀路径,这里将生成etcd证书的.pem和-key.pem文件。
# 
# 这条命令的作用是使用指定的CA证书和私钥,根据证书请求的JSON文件和配置文件生成etcd的证书文件。

3.1.3将证书复制到其他节点

Master='k8s-master02 k8s-master03'
for NODE in $Master; do ssh $NODE "mkdir -p /etc/etcd/ssl"; for FILE in etcd-ca-key.pem  etcd-ca.pem  etcd-key.pem  etcd.pem; do scp /etc/etcd/ssl/${FILE} $NODE:/etc/etcd/ssl/${FILE}; done; done

# 这个命令是一个简单的for循环,在一个由`$Master`存储的主机列表中迭代执行。对于每个主机,它使用`ssh`命令登录到主机,并在远程主机上创建一个名为`/etc/etcd/ssl`的目录(如果不存在)。接下来,它使用`scp`将本地主机上`/etc/etcd/ssl`目录中的四个文件(`etcd-ca-key.pem`,`etcd-ca.pem`,`etcd-key.pem`和`etcd.pem`)复制到远程主机的`/etc/etcd/ssl`目录中。最终的结果是,远程主机上的`/etc/etcd/ssl`目录中包含与本地主机上相同的四个文件的副本。

3.2.生成k8s相关证书

特别说明除外,以下操作在所有master节点操作

3.2.1 所有k8s节点创建证书存放目录

mkdir -p /etc/kubernetes/pki

3.2.2 master01节点生成k8s证书

# 写入生成证书所需的配置文件
cat > ca-csr.json   << EOF 
{
  "CN": "kubernetes",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "Kubernetes",
      "OU": "Kubernetes-manual"
    }
  ],
  "ca": {
    "expiry": "876000h"
  }
}
EOF
# 这是一个用于生成 Kubernetes 相关证书的配置文件。该配置文件中包含以下信息:
# 
# - CN:CommonName,即用于标识证书的通用名称。在此配置中,CN 设置为 "kubernetes",表示该证书是用于 Kubernetes。
# - key:用于生成证书的算法和大小。在此配置中,使用的算法是 RSA,大小是 2048 位。
# - names:用于证书中的名称字段的详细信息。在此配置中,有以下字段信息:
#   - C:Country,即国家。在此配置中,设置为 "CN"。
#   - ST:State,即省/州。在此配置中,设置为 "Beijing"。
#   - L:Locality,即城市。在此配置中,设置为 "Beijing"。
#   - O:Organization,即组织。在此配置中,设置为 "Kubernetes"。
#   - OU:Organization Unit,即组织单位。在此配置中,设置为 "Kubernetes-manual"。
# - ca:用于证书签名的证书颁发机构(CA)的配置信息。在此配置中,设置了证书的有效期为 876000 小时。
# 
# 这个配置文件可以用于生成 Kubernetes 相关的证书,以确保集群中的通信安全性。

cfssl gencert -initca ca-csr.json | cfssljson -bare /etc/kubernetes/pki/ca

# 具体的解释如下:
# 
# cfssl是一个用于生成TLS/SSL证书的工具,它支持PKI、JSON格式配置文件以及与许多其他集成工具的配合使用。
# 
# gencert参数表示生成证书的操作。-initca参数表示初始化一个CA(证书颁发机构)。CA是用于签发其他证书的根证书。ca-csr.json是一个JSON格式的配置文件,其中包含了CA的详细信息,如私钥、公钥、有效期等。这个文件提供了生成CA证书所需的信息。
# 
# | 符号表示将上一个命令的输出作为下一个命令的输入。
# 
# cfssljson是cfssl工具的一个子命令,用于格式化cfssl生成的JSON数据。 -bare参数表示直接输出裸证书,即只生成证书文件,不包含其他格式的文件。/etc/kubernetes/pki/ca是指定生成的证书文件的路径和名称。
# 
# 所以,这条命令的含义是使用cfssl工具根据配置文件ca-csr.json生成一个CA证书,并将证书文件保存在/etc/kubernetes/pki/ca路径下。

cat > apiserver-csr.json << EOF 
{
  "CN": "kube-apiserver",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "Kubernetes",
      "OU": "Kubernetes-manual"
    }
  ]
}
EOF

# 这是一个用于生成 Kubernetes 相关证书的配置文件。该配置文件中包含以下信息:
# 
# - `CN` 字段指定了证书的通用名称 (Common Name),这里设置为 "kube-apiserver",表示该证书用于 Kubernetes API Server。
# - `key` 字段指定了生成证书时所选用的加密算法和密钥长度。这里选用了 RSA 算法,密钥长度为 2048 位。
# - `names` 字段包含了一组有关证书持有者信息的项。这里使用了以下信息:
#   - `C` 表示国家代码 (Country),这里设置为 "CN" 表示中国。
#   - `ST` 表示州或省份 (State),这里设置为 "Beijing" 表示北京市。
#   - `L` 表示城市或地区 (Location),这里设置为 "Beijing" 表示北京市。
#   - `O` 表示组织名称 (Organization),这里设置为 "Kubernetes" 表示 Kubernetes。
#   - `OU` 表示组织单位 (Organizational Unit),这里设置为 "Kubernetes-manual" 表示手动管理的 Kubernetes 集群。
# 
# 这个配置文件可以用于生成 Kubernetes 相关的证书,以确保集群中的通信安全性。


# 生成一个根证书 ,多写了一些IP作为预留IP,为将来添加node做准备
# 10.96.0.1是service网段的第一个地址,需要计算,192.168.1.46为高可用vip地址
# 若没有IPv6 可删除可保留 

cfssl gencert   \
-ca=/etc/kubernetes/pki/ca.pem   \
-ca-key=/etc/kubernetes/pki/ca-key.pem   \
-config=ca-config.json   \
-hostname=10.96.0.1,192.168.1.46,127.0.0.1,kubernetes,kubernetes.default,kubernetes.default.svc,kubernetes.default.svc.cluster,kubernetes.default.svc.cluster.local,x.oiox.cn,k.oiox.cn,l.oiox.cn,o.oiox.cn,192.168.1.41,192.168.1.42,192.168.1.43,192.168.1.44,192.168.1.45,192.168.1.46,192.168.0.47,192.168.0.48,192.168.0.49,192.168.1.50,fc00:43f4:1eea:1::10,fc00:43f4:1eea:1::20,fc00:43f4:1eea:1::30,fc00:43f4:1eea:1::40,fc00:43f4:1eea:1::50,fc00:43f4:1eea:1::60,fc00:43f4:1eea:1::70,fc00:43f4:1eea:1::80,fc00:43f4:1eea:1::90,fc00:43f4:1eea:1::100,::1   \
-profile=kubernetes   apiserver-csr.json | cfssljson -bare /etc/kubernetes/pki/apiserver

# 这个命令是使用cfssl工具生成Kubernetes API Server的证书。
# 
# 命令的参数解释如下:
# - `-ca=/etc/kubernetes/pki/ca.pem`:指定证书的颁发机构(CA)文件路径。
# - `-ca-key=/etc/kubernetes/pki/ca-key.pem`:指定证书的颁发机构(CA)私钥文件路径。
# - `-config=ca-config.json`:指定证书生成的配置文件路径,配置文件中包含了证书的有效期、加密算法等信息。
# - `-hostname=10.96.0.1,192.168.1.46,127.0.0.1,fc00:43f4:1eea:1::10`:指定证书的主机名或IP地址列表。
# - `-profile=kubernetes`:指定证书生成的配置文件中的配置文件名。
# - `apiserver-csr.json`:API Server的证书签名请求配置文件路径。
# - `| cfssljson -bare /etc/kubernetes/pki/apiserver`:通过管道将生成的证书输出到cfssljson工具,将其转换为PEM编码格式,并保存到 `/etc/kubernetes/pki/apiserver.pem` 和 `/etc/kubernetes/pki/apiserver-key.pem` 文件中。
# 
# 最终,这个命令将会生成API Server的证书和私钥,并保存到指定的文件中。

3.2.3 生成apiserver聚合证书

cat > front-proxy-ca-csr.json  << EOF 
{
  "CN": "kubernetes",
  "key": {
     "algo": "rsa",
     "size": 2048
  },
  "ca": {
    "expiry": "876000h"
  }
}
EOF

# 这个JSON文件表示了生成一个名为"kubernetes"的证书的配置信息。这个证书是用来进行Kubernetes集群的身份验证和安全通信。
# 
# 配置信息包括以下几个部分:
# 
# 1. "CN": "kubernetes":这表示了证书的通用名称(Common Name),也就是证书所代表的实体的名称。在这里,证书的通用名称被设置为"kubernetes",表示这个证书是用来代表Kubernetes集群。
# 
# 2. "key":这是用来生成证书的密钥相关的配置。在这里,配置使用了RSA算法,并且设置了密钥的大小为2048位。
# 
# 3. "ca":这个字段指定了证书的颁发机构(Certificate Authority)相关的配置。在这里,配置指定了证书的有效期为876000小时,即100年。这意味着该证书在100年内将被视为有效,过期后需要重新生成。
# 
# 总之,这个JSON文件中的配置信息描述了如何生成一个用于Kubernetes集群的证书,包括证书的通用名称、密钥算法和大小以及证书的有效期。

cfssl gencert   -initca front-proxy-ca-csr.json | cfssljson -bare /etc/kubernetes/pki/front-proxy-ca 
# 具体的解释如下:
# 
# cfssl是一个用于生成TLS/SSL证书的工具,它支持PKI、JSON格式配置文件以及与许多其他集成工具的配合使用。
# 
# gencert参数表示生成证书的操作。-initca参数表示初始化一个CA(证书颁发机构)。CA是用于签发其他证书的根证书。front-proxy-ca-csr.json是一个JSON格式的配置文件,其中包含了CA的详细信息,如私钥、公钥、有效期等。这个文件提供了生成CA证书所需的信息。
# 
# | 符号表示将上一个命令的输出作为下一个命令的输入。
# 
# cfssljson是cfssl工具的一个子命令,用于格式化cfssl生成的JSON数据。 -bare参数表示直接输出裸证书,即只生成证书文件,不包含其他格式的文件。/etc/kubernetes/pki/front-proxy-ca是指定生成的证书文件的路径和名称。
# 
# 所以,这条命令的含义是使用cfssl工具根据配置文件ca-csr.json生成一个CA证书,并将证书文件保存在/etc/kubernetes/pki/front-proxy-ca路径下。

cat > front-proxy-client-csr.json  << EOF 
{
  "CN": "front-proxy-client",
  "key": {
     "algo": "rsa",
     "size": 2048
  }
}
EOF

# 这是一个JSON格式的配置文件,用于描述一个名为"front-proxy-client"的配置。配置包括两个字段:CN和key。
# 
# - CN(Common Name)字段表示证书的通用名称,这里为"front-proxy-client"。
# - key字段描述了密钥的算法和大小。"algo"表示使用RSA算法,"size"表示密钥大小为2048位。
# 
# 该配置文件用于生成一个SSL证书,用于在前端代理客户端进行认证和数据传输的加密。这个证书中的通用名称是"front-proxy-client",使用RSA算法生成,密钥大小为2048位。

cfssl gencert  \
-ca=/etc/kubernetes/pki/front-proxy-ca.pem   \
-ca-key=/etc/kubernetes/pki/front-proxy-ca-key.pem   \
-config=ca-config.json   \
-profile=kubernetes   front-proxy-client-csr.json | cfssljson -bare /etc/kubernetes/pki/front-proxy-client

# 这个命令使用cfssl工具生成一个用于Kubernetes的front-proxy-client证书。
# 
# 主要参数解释如下:
# - `-ca=/etc/kubernetes/pki/front-proxy-ca.pem`: 指定用于签署证书的根证书文件路径。
# - `-ca-key=/etc/kubernetes/pki/front-proxy-ca-key.pem`: 指定用于签署证书的根证书的私钥文件路径。
# - `-config=ca-config.json`: 指定用于配置证书签署的配置文件路径。该配置文件描述了证书生成的一些规则,如加密算法和有效期等。
# - `-profile=kubernetes`: 指定生成证书时使用的配置文件中定义的profile,其中包含了一些默认的参数。
# - `front-proxy-client-csr.json`: 指定用于生成证书的CSR文件路径,该文件包含了证书请求的相关信息。
# - `| cfssljson -bare /etc/kubernetes/pki/front-proxy-client`: 通过管道将生成的证书输出到cfssljson工具进行解析,并通过`-bare`参数将证书和私钥分别保存到指定路径。
# 
# 这个命令的作用是根据提供的CSR文件和配置信息,使用指定的根证书和私钥生成一个前端代理客户端的证书,并将证书和私钥分别保存到`/etc/kubernetes/pki/front-proxy-client.pem`和`/etc/kubernetes/pki/front-proxy-client-key.pem`文件中。

3.2.4 生成controller-manage的证书

在《5.高可用配置》选择使用那种高可用方案
若使用 haproxy、keepalived 那么为 --server=https://192.168.1.46:9443
若使用 nginx方案,那么为 --server=https://127.0.0.1:8443

cat > manager-csr.json << EOF 
{
  "CN": "system:kube-controller-manager",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "system:kube-controller-manager",
      "OU": "Kubernetes-manual"
    }
  ]
}
EOF
# 这是一个用于生成密钥对(公钥和私钥)的JSON配置文件。下面是针对该文件中每个字段的详细解释:
# 
# - "CN": 值为"system:kube-controller-manager",代表通用名称(Common Name),是此密钥对的主题(subject)。
# - "key": 这个字段用来定义密钥算法和大小。
#   - "algo": 值为"rsa",表示使用RSA算法。
#   - "size": 值为2048,表示生成的密钥大小为2048位。
# - "names": 这个字段用来定义密钥对的各个名称字段。
#   - "C": 值为"CN",表示国家(Country)名称是"CN"(中国)。
#   - "ST": 值为"Beijing",表示省/州(State/Province)名称是"Beijing"(北京)。
#   - "L": 值为"Beijing",表示城市(Locality)名称是"Beijing"(北京)。
#   - "O": 值为"system:kube-controller-manager",表示组织(Organization)名称是"system:kube-controller-manager"。
#   - "OU": 值为"Kubernetes-manual",表示组织单位(Organizational Unit)名称是"Kubernetes-manual"。
# 
# 这个JSON配置文件基本上是告诉生成密钥对的工具,生成一个带有特定名称和属性的密钥对。


cfssl gencert \
   -ca=/etc/kubernetes/pki/ca.pem \
   -ca-key=/etc/kubernetes/pki/ca-key.pem \
   -config=ca-config.json \
   -profile=kubernetes \
   manager-csr.json | cfssljson -bare /etc/kubernetes/pki/controller-manager
# 这是一个命令行操作,使用cfssl工具生成证书。
# 
# 1. `cfssl gencert` 是cfssl工具的命令,用于生成证书。
# 2. `-ca` 指定根证书的路径和文件名,这里是`/etc/kubernetes/pki/ca.pem`。
# 3. `-ca-key` 指定根证书的私钥的路径和文件名,这里是`/etc/kubernetes/pki/ca-key.pem`。
# 4. `-config` 指定配置文件的路径和文件名,这里是`ca-config.json`。
# 5. `-profile` 指定证书使用的配置文件中的配置模板,这里是`kubernetes`。
# 6. `manager-csr.json` 是证书签发请求的配置文件,用于生成证书签发请求。
# 7. `|` 管道操作符,将前一条命令的输出作为后一条命令的输入。
# 8. `cfssljson -bare` 是 cfssl 工具的命令,作用是将证书签发请求的输出转换为PKCS#1、PKCS#8和x509 PEM文件。
# 9. `/etc/kubernetes/pki/controller-manager` 是转换后的 PEM 文件的存储位置和文件名。
# 
# 这个命令的作用是根据根证书和私钥、配置文件以及证书签发请求的配置文件,生成经过签发的控制器管理器证书和私钥,并将转换后的 PEM 文件保存到指定的位置。


# 设置一个集群项
# 在《5.高可用配置》选择使用那种高可用方案
# 若使用 haproxy、keepalived 那么为 `--server=https://192.168.1.46:9443`
# 若使用 nginx方案,那么为 `--server=https://127.0.0.1:8443`
kubectl config set-cluster kubernetes \
     --certificate-authority=/etc/kubernetes/pki/ca.pem \
     --embed-certs=true \
     --server=https://127.0.0.1:8443 \
     --kubeconfig=/etc/kubernetes/controller-manager.kubeconfig
# kubectl config set-cluster命令用于配置集群信息。
# --certificate-authority选项指定了集群的证书颁发机构(CA)的路径,这个CA会验证kube-apiserver提供的证书是否合法。
# --embed-certs选项用于将证书嵌入到生成的kubeconfig文件中,这样就不需要在kubeconfig文件中单独指定证书文件路径。
# --server选项指定了kube-apiserver的地址,这里使用的是127.0.0.1:8443,表示使用本地主机上的kube-apiserver,默认端口为8443。
# --kubeconfig选项指定了生成的kubeconfig文件的路径和名称,这里指定为/etc/kubernetes/controller-manager.kubeconfig。
# 综上所述,kubectl config set-cluster命令的作用是在kubeconfig文件中设置集群信息,包括证书颁发机构、证书、kube-apiserver地址等。


# 设置一个环境项,一个上下文
kubectl config set-context system:kube-controller-manager@kubernetes \
    --cluster=kubernetes \
    --user=system:kube-controller-manager \
    --kubeconfig=/etc/kubernetes/controller-manager.kubeconfig
# 这个命令用于配置 Kubernetes 控制器管理器的上下文信息。下面是各个参数的详细解释:
# 1. `kubectl config set-context system:kube-controller-manager@kubernetes`: 设置上下文的名称为 `system:kube-controller-manager@kubernetes`,这是一个标识符,用于唯一标识该上下文。
# 2. `--cluster=kubernetes`: 指定集群的名称为 `kubernetes`,这是一个现有集群的标识符,表示要管理的 Kubernetes 集群。
# 3. `--user=system:kube-controller-manager`: 指定使用的用户身份为 `system:kube-controller-manager`。这是一个特殊的用户身份,具有控制 Kubernetes 控制器管理器的权限。
# 4. `--kubeconfig=/etc/kubernetes/controller-manager.kubeconfig`: 指定 kubeconfig 文件的路径为 `/etc/kubernetes/controller-manager.kubeconfig`。kubeconfig 文件是一个用于管理 Kubernetes 配置的文件,包含了集群、用户和上下文的相关信息。
# 通过运行这个命令,可以将这些配置信息保存到 `/etc/kubernetes/controller-manager.kubeconfig` 文件中,以便在后续的操作中使用。



  # 设置一个用户项
kubectl config set-credentials system:kube-controller-manager \
   --client-certificate=/etc/kubernetes/pki/controller-manager.pem \
   --client-key=/etc/kubernetes/pki/controller-manager-key.pem \
   --embed-certs=true \
   --kubeconfig=/etc/kubernetes/controller-manager.kubeconfig
# 上述命令是用于设置 Kubernetes 的 controller-manager 组件的客户端凭据。下面是每个参数的详细解释:
# 
# - `kubectl config`: 是使用 kubectl 命令行工具的配置子命令。
# - `set-credentials`: 是定义一个新的用户凭据配置的子命令。
# - `system:kube-controller-manager`: 是设置用户凭据的名称,`system:` 是 Kubernetes API Server 内置的身份验证器使用的用户标识符前缀,它表示是一个系统用户,在本例中是 kube-controller-manager 组件使用的身份。
# - `--client-certificate=/etc/kubernetes/pki/controller-manager.pem`: 指定 controller-manager.pem 客户端证书的路径。
# - `--client-key=/etc/kubernetes/pki/controller-manager-key.pem`: 指定 controller-manager-key.pem 客户端私钥的路径。
# - `--embed-certs=true`: 表示将证书和私钥直接嵌入到生成的 kubeconfig 文件中,而不是通过引用外部文件。
# - `--kubeconfig=/etc/kubernetes/controller-manager.kubeconfig`: 指定生成的 kubeconfig 文件的路径和文件名,即 controller-manager.kubeconfig。
# 
# 通过运行上述命令,将根据提供的证书和私钥信息,为 kube-controller-manager 创建一个 kubeconfig 文件,以便后续使用该文件进行身份验证和访问 Kubernetes API。


# 设置默认环境
kubectl config use-context system:kube-controller-manager@kubernetes \
     --kubeconfig=/etc/kubernetes/controller-manager.kubeconfig
# 这个命令是用来指定kubectl使用指定的上下文环境来执行操作。上下文环境是kubectl用来确定要连接到哪个Kubernetes集群以及使用哪个身份验证信息的配置。
# 
# 在这个命令中,`kubectl config use-context`是用来设置当前上下文环境的命令。 `system:kube-controller-manager@kubernetes`是指定的上下文名称,它告诉kubectl要使用的Kubernetes集群和身份验证信息。 
# `--kubeconfig=/etc/kubernetes/controller-manager.kubeconfig`是用来指定使用的kubeconfig文件的路径。kubeconfig文件是存储集群连接和身份验证信息的配置文件。
# 通过执行这个命令,kubectl将使用指定的上下文来执行后续的操作,包括部署和管理Kubernetes资源。

3.2.5 生成kube-scheduler的证书

cat > scheduler-csr.json << EOF 
{
  "CN": "system:kube-scheduler",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "system:kube-scheduler",
      "OU": "Kubernetes-manual"
    }
  ]
}
EOF
# 这个命令是用来创建一个叫做scheduler-csr.json的文件,并将其中的内容赋值给该文件。
# 
# 文件内容是一个JSON格式的文本,包含了一个描述证书请求的结构。
# 
# 具体内容如下:
# 
# - "CN": "system:kube-scheduler":Common Name字段,表示该证书的名称为system:kube-scheduler。
# - "key": {"algo": "rsa", "size": 2048}:key字段指定生成证书时使用的加密算法是RSA,并且密钥的长度为2048位。
# - "names": [...]:names字段定义了证书中的另外一些标识信息。
# - "C": "CN":Country字段,表示国家/地区为中国。
# - "ST": "Beijing":State字段,表示省/市为北京。
# - "L": "Beijing":Locality字段,表示所在城市为北京。
# - "O": "system:kube-scheduler":Organization字段,表示组织为system:kube-scheduler。
# - "OU": "Kubernetes-manual":Organizational Unit字段,表示组织单元为Kubernetes-manual。
# 
# 而EOF是一个占位符,用于标记开始和结束的位置。在开始的EOF之后到结束的EOF之间的内容将会被写入到scheduler-csr.json文件中。
# 
# 总体来说,这个命令用于生成一个描述kube-scheduler证书请求的JSON文件。

cfssl gencert \
   -ca=/etc/kubernetes/pki/ca.pem \
   -ca-key=/etc/kubernetes/pki/ca-key.pem \
   -config=ca-config.json \
   -profile=kubernetes \
   scheduler-csr.json | cfssljson -bare /etc/kubernetes/pki/scheduler
# 上述命令是使用cfssl工具生成Kubernetes Scheduler的证书。
# 
# 具体解释如下:
# 
# 1. `cfssl gencert`:使用cfssl工具生成证书。
# 2. `-ca=/etc/kubernetes/pki/ca.pem`:指定根证书文件的路径。在这里,是指定根证书的路径为`/etc/kubernetes/pki/ca.pem`。
# 3. `-ca-key=/etc/kubernetes/pki/ca-key.pem`:指定根证书私钥文件的路径。在这里,是指定根证书私钥的路径为`/etc/kubernetes/pki/ca-key.pem`。
# 4. `-config=ca-config.json`:指定证书配置文件的路径。在这里,是指定证书配置文件的路径为`ca-config.json`。
# 5. `-profile=kubernetes`:指定证书的配置文件中的一个配置文件模板。在这里,是指定配置文件中的`kubernetes`配置模板。
# 6. `scheduler-csr.json`:指定Scheduler的证书签名请求文件(CSR)的路径。在这里,是指定请求文件的路径为`scheduler-csr.json`。
# 7. `|`(管道符号):将前一个命令的输出作为下一个命令的输入。
# 8. `cfssljson`:将cfssl工具生成的证书签名请求(CSR)进行解析。
# 9. `-bare /etc/kubernetes/pki/scheduler`:指定输出路径和前缀。在这里,是将解析的证书签名请求生成以下文件:`/etc/kubernetes/pki/scheduler.pem`(包含了证书)、`/etc/kubernetes/pki/scheduler-key.pem`(包含了私钥)。
# 
# 总结来说,这个命令的目的是根据根证书、根证书私钥、证书配置文件、CSR文件等生成Kubernetes Scheduler的证书和私钥文件。



# 在《5.高可用配置》选择使用那种高可用方案
# 若使用 haproxy、keepalived 那么为 `--server=https://192.168.1.46:9443`
# 若使用 nginx方案,那么为 `--server=https://127.0.0.1:8443`

kubectl config set-cluster kubernetes \
     --certificate-authority=/etc/kubernetes/pki/ca.pem \
     --embed-certs=true \
     --server=https://127.0.0.1:8443 \
     --kubeconfig=/etc/kubernetes/scheduler.kubeconfig
# 该命令用于配置一个名为"kubernetes"的集群,并将其应用到/etc/kubernetes/scheduler.kubeconfig文件中。
# 
# 该命令的解释如下:
# - `kubectl config set-cluster kubernetes`: 设置一个集群并命名为"kubernetes"。
# - `--certificate-authority=/etc/kubernetes/pki/ca.pem`: 指定集群使用的证书授权机构的路径。
# - `--embed-certs=true`: 该标志指示将证书嵌入到生成的kubeconfig文件中。
# - `--server=https://127.0.0.1:8443`: 指定集群的 API server 位置。
# - `--kubeconfig=/etc/kubernetes/scheduler.kubeconfig`: 指定要保存 kubeconfig 文件的路径和名称。

kubectl config set-credentials system:kube-scheduler \
     --client-certificate=/etc/kubernetes/pki/scheduler.pem \
     --client-key=/etc/kubernetes/pki/scheduler-key.pem \
     --embed-certs=true \
     --kubeconfig=/etc/kubernetes/scheduler.kubeconfig
# 这段命令是用于设置 kube-scheduler 组件的身份验证凭据,并生成相应的 kubeconfig 文件。
# 
# 解释每个选项的含义如下:
# - `kubectl config set-credentials system:kube-scheduler`:设置 `system:kube-scheduler` 用户的身份验证凭据。
# - `--client-certificate=/etc/kubernetes/pki/scheduler.pem`:指定一个客户端证书文件,用于基于证书的身份验证。在这种情况下,指定了 kube-scheduler 组件的证书文件路径。
# - `--client-key=/etc/kubernetes/pki/scheduler-key.pem`:指定与客户端证书相对应的客户端私钥文件。
# - `--embed-certs=true`:将客户端证书和私钥嵌入到生成的 kubeconfig 文件中。
# - `--kubeconfig=/etc/kubernetes/scheduler.kubeconfig`:指定生成的 kubeconfig 文件的路径和名称。
# 
# 该命令的目的是为 kube-scheduler 组件生成一个 kubeconfig 文件,以便进行身份验证和访问集群资源。kubeconfig 文件是一个包含了连接到 Kubernetes 集群所需的所有配置信息的文件,包括服务器地址、证书和秘钥等。

kubectl config set-context system:kube-scheduler@kubernetes \
     --cluster=kubernetes \
     --user=system:kube-scheduler \
     --kubeconfig=/etc/kubernetes/scheduler.kubeconfig
# 该命令用于设置一个名为"system:kube-scheduler@kubernetes"的上下文,具体配置如下:
# 
# 1. --cluster=kubernetes: 指定集群的名称为"kubernetes",这个集群是在当前的kubeconfig文件中已经定义好的。
# 2. --user=system:kube-scheduler: 指定用户的名称为"system:kube-scheduler",这个用户也是在当前的kubeconfig文件中已经定义好的。这个用户用于认证和授权kube-scheduler组件访问Kubernetes集群的权限。
# 3. --kubeconfig=/etc/kubernetes/scheduler.kubeconfig: 指定kubeconfig文件的路径为"/etc/kubernetes/scheduler.kubeconfig",这个文件将被用来保存上下文的配置信息。
# 
# 这个命令的作用是将上述的配置信息保存到指定的kubeconfig文件中,以便后续使用该文件进行认证和授权访问Kubernetes集群。

kubectl config use-context system:kube-scheduler@kubernetes \
     --kubeconfig=/etc/kubernetes/scheduler.kubeconfig
# 上述命令是使用`kubectl`命令来配置Kubernetes集群中的调度器组件。
# 
# `kubectl config use-context`命令用于切换`kubectl`当前使用的上下文。上下文是Kubernetes集群、用户和命名空间的组合,用于确定`kubectl`的连接目标。下面解释这个命令的不同部分:
# 
# - `system:kube-scheduler@kubernetes`是一个上下文名称。它指定了使用`kube-scheduler`用户和`kubernetes`命名空间的系统级别上下文。系统级别上下文用于操作Kubernetes核心组件。
# 
# - `--kubeconfig=/etc/kubernetes/scheduler.kubeconfig`用于指定Kubernetes配置文件的路径。Kubernetes配置文件包含连接到Kubernetes集群所需的身份验证和连接信息。
# 
# 通过运行以上命令,`kubectl`将使用指定的上下文和配置文件,以便在以后的命令中能正确地与Kubernetes集群中的调度器组件进行交互。

3.2.6 生成admin的证书配置

cat > admin-csr.json << EOF 
{
  "CN": "admin",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "system:masters",
      "OU": "Kubernetes-manual"
    }
  ]
}
EOF
# 这段代码是一个JSON格式的配置文件,用于创建和配置一个名为"admin"的Kubernetes凭证。
# 
# 这个凭证包含以下字段:
# 
# - "CN": "admin": 这是凭证的通用名称,表示这是一个管理员凭证。
# - "key": 这是一个包含证书密钥相关信息的对象。
#   - "algo": "rsa":这是使用的加密算法类型,这里是RSA加密算法。
#   - "size": 2048:这是密钥的大小,这里是2048位。
# - "names": 这是一个包含证书名称信息的数组。
#   - "C": "CN":这是证书的国家/地区字段,这里是中国。
#   - "ST": "Beijing":这是证书的省/州字段,这里是北京。
#   - "L": "Beijing":这是证书的城市字段,这里是北京。
#   - "O": "system:masters":这是证书的组织字段,这里是system:masters,表示系统的管理员组。
#   - "OU": "Kubernetes-manual":这是证书的部门字段,这里是Kubernetes-manual。
# 
# 通过这个配置文件创建的凭证将具有管理员权限,并且可以用于管理Kubernetes集群。

cfssl gencert \
   -ca=/etc/kubernetes/pki/ca.pem \
   -ca-key=/etc/kubernetes/pki/ca-key.pem \
   -config=ca-config.json \
   -profile=kubernetes \
   admin-csr.json | cfssljson -bare /etc/kubernetes/pki/admin
# 上述命令是使用cfssl工具生成Kubernetes admin的证书。
# 
# 具体解释如下:
# 
# 1. `cfssl gencert`:使用cfssl工具生成证书。
# 2. `-ca=/etc/kubernetes/pki/ca.pem`:指定根证书文件的路径。在这里,是指定根证书的路径为`/etc/kubernetes/pki/ca.pem`。
# 3. `-ca-key=/etc/kubernetes/pki/ca-key.pem`:指定根证书私钥文件的路径。在这里,是指定根证书私钥的路径为`/etc/kubernetes/pki/ca-key.pem`。
# 4. `-config=ca-config.json`:指定证书配置文件的路径。在这里,是指定证书配置文件的路径为`ca-config.json`。
# 5. `-profile=kubernetes`:指定证书的配置文件中的一个配置文件模板。在这里,是指定配置文件中的`kubernetes`配置模板。
# 6. `admin-csr.json`:指定admin的证书签名请求文件(CSR)的路径。在这里,是指定请求文件的路径为`admin-csr.json`。
# 7. `|`(管道符号):将前一个命令的输出作为下一个命令的输入。
# 8. `cfssljson`:将cfssl工具生成的证书签名请求(CSR)进行解析。
# 9. `-bare /etc/kubernetes/pki/admin`:指定输出路径和前缀。在这里,是将解析的证书签名请求生成以下文件:`/etc/kubernetes/pki/admin.pem`(包含了证书)、`/etc/kubernetes/pki/admin-key.pem`(包含了私钥)。
# 
# 总结来说,这个命令的目的是根据根证书、根证书私钥、证书配置文件、CSR文件等生成Kubernetes Scheduler的证书和私钥文件。

# 在《5.高可用配置》选择使用那种高可用方案
# 若使用 haproxy、keepalived 那么为 `--server=https://192.168.1.46:9443`
# 若使用 nginx方案,那么为 `--server=https://127.0.0.1:8443`

kubectl config set-cluster kubernetes     \
  --certificate-authority=/etc/kubernetes/pki/ca.pem     \
  --embed-certs=true     \
  --server=https://127.0.0.1:8443     \
  --kubeconfig=/etc/kubernetes/admin.kubeconfig
# 该命令用于配置一个名为"kubernetes"的集群,并将其应用到/etc/kubernetes/scheduler.kubeconfig文件中。
# 
# 该命令的解释如下:
# - `kubectl config set-cluster kubernetes`: 设置一个集群并命名为"kubernetes"。
# - `--certificate-authority=/etc/kubernetes/pki/ca.pem`: 指定集群使用的证书授权机构的路径。
# - `--embed-certs=true`: 该标志指示将证书嵌入到生成的kubeconfig文件中。
# - `--server=https://127.0.0.1:8443`: 指定集群的 API server 位置。
# - `--kubeconfig=/etc/kubernetes/admin.kubeconfig`: 指定要保存 kubeconfig 文件的路径和名称。

kubectl config set-credentials kubernetes-admin  \
  --client-certificate=/etc/kubernetes/pki/admin.pem     \
  --client-key=/etc/kubernetes/pki/admin-key.pem     \
  --embed-certs=true     \
  --kubeconfig=/etc/kubernetes/admin.kubeconfig
# 这段命令是用于设置 kubernetes-admin 组件的身份验证凭据,并生成相应的 kubeconfig 文件。
# 
# 解释每个选项的含义如下:
# - `kubectl config set-credentials kubernetes-admin`:设置 `kubernetes-admin` 用户的身份验证凭据。
# - `--client-certificate=/etc/kubernetes/pki/admin.pem`:指定一个客户端证书文件,用于基于证书的身份验证。在这种情况下,指定了 admin 组件的证书文件路径。
# - `--client-key=/etc/kubernetes/pki/admin-key.pem`:指定与客户端证书相对应的客户端私钥文件。
# - `--embed-certs=true`:将客户端证书和私钥嵌入到生成的 kubeconfig 文件中。
# - `--kubeconfig=/etc/kubernetes/admin.kubeconfig`:指定生成的 kubeconfig 文件的路径和名称。
# 
# 该命令的目的是为 admin 组件生成一个 kubeconfig 文件,以便进行身份验证和访问集群资源。kubeconfig 文件是一个包含了连接到 Kubernetes 集群所需的所有配置信息的文件,包括服务器地址、证书和秘钥等。


kubectl config set-context kubernetes-admin@kubernetes    \
  --cluster=kubernetes     \
  --user=kubernetes-admin     \
  --kubeconfig=/etc/kubernetes/admin.kubeconfig
# 该命令用于设置一个名为"kubernetes-admin@kubernetes"的上下文,具体配置如下:
# 
# 1. --cluster=kubernetes: 指定集群的名称为"kubernetes",这个集群是在当前的kubeconfig文件中已经定义好的。
# 2. --user=kubernetes-admin: 指定用户的名称为"kubernetes-admin",这个用户也是在当前的kubeconfig文件中已经定义好的。这个用户用于认证和授权admin组件访问Kubernetes集群的权限。
# 3. --kubeconfig=/etc/kubernetes/admin.kubeconfig: 指定kubeconfig文件的路径为"/etc/kubernetes/admin.kubeconfig",这个文件将被用来保存上下文的配置信息。
# 
# 这个命令的作用是将上述的配置信息保存到指定的kubeconfig文件中,以便后续使用该文件进行认证和授权访问Kubernetes集群。


kubectl config use-context kubernetes-admin@kubernetes  --kubeconfig=/etc/kubernetes/admin.kubeconfig
# 上述命令是使用`kubectl`命令来配置Kubernetes集群中的调度器组件。
# 
# `kubectl config use-context`命令用于切换`kubectl`当前使用的上下文。上下文是Kubernetes集群、用户和命名空间的组合,用于确定`kubectl`的连接目标。下面解释这个命令的不同部分:
# 
# - `kubernetes-admin@kubernetes`是一个上下文名称。它指定了使用`kubernetes-admin`用户和`kubernetes`命名空间的系统级别上下文。系统级别上下文用于操作Kubernetes核心组件。
# 
# - `--kubeconfig=/etc/kubernetes/admin.kubeconfig`用于指定Kubernetes配置文件的路径。Kubernetes配置文件包含连接到Kubernetes集群所需的身份验证和连接信息。
# 
# 通过运行以上命令,`kubectl`将使用指定的上下文和配置文件,以便在以后的命令中能正确地与Kubernetes集群中的调度器组件进行交互。

3.2.7 创建kube-proxy证书

在《5.高可用配置》选择使用那种高可用方案
若使用 haproxy、keepalived 那么为 --server=https://192.168.1.46:9443
若使用 nginx方案,那么为 --server=https://127.0.0.1:8443

cat > kube-proxy-csr.json  << EOF 
{
  "CN": "system:kube-proxy",
  "key": {
    "algo": "rsa",
    "size": 2048
  },
  "names": [
    {
      "C": "CN",
      "ST": "Beijing",
      "L": "Beijing",
      "O": "system:kube-proxy",
      "OU": "Kubernetes-manual"
    }
  ]
}
EOF
# 这段代码是一个JSON格式的配置文件,用于创建和配置一个名为"kube-proxy-csr"的Kubernetes凭证。
# 
# 这个凭证包含以下字段:
# 
# - "CN": "system:kube-proxy": 这是凭证的通用名称,表示这是一个管理员凭证。
# - "key": 这是一个包含证书密钥相关信息的对象。
#   - "algo": "rsa":这是使用的加密算法类型,这里是RSA加密算法。
#   - "size": 2048:这是密钥的大小,这里是2048位。
# - "names": 这是一个包含证书名称信息的数组。
#   - "C": "CN":这是证书的国家/地区字段,这里是中国。
#   - "ST": "Beijing":这是证书的省/州字段,这里是北京。
#   - "L": "Beijing":这是证书的城市字段,这里是北京。
#   - "O": "system:kube-proxy":这是证书的组织字段,这里是system:kube-proxy。
#   - "OU": "Kubernetes-manual":这是证书的部门字段,这里是Kubernetes-manual。
# 
# 通过这个配置文件创建的凭证将具有管理员权限,并且可以用于管理Kubernetes集群。

cfssl gencert \
   -ca=/etc/kubernetes/pki/ca.pem \
   -ca-key=/etc/kubernetes/pki/ca-key.pem \
   -config=ca-config.json \
   -profile=kubernetes \
   kube-proxy-csr.json | cfssljson -bare /etc/kubernetes/pki/kube-proxy
# 上述命令是使用cfssl工具生成Kubernetes admin的证书。
# 
# 具体解释如下:
# 
# 1. `cfssl gencert`:使用cfssl工具生成证书。
# 2. `-ca=/etc/kubernetes/pki/ca.pem`:指定根证书文件的路径。在这里,是指定根证书的路径为`/etc/kubernetes/pki/ca.pem`。
# 3. `-ca-key=/etc/kubernetes/pki/ca-key.pem`:指定根证书私钥文件的路径。在这里,是指定根证书私钥的路径为`/etc/kubernetes/pki/ca-key.pem`。
# 4. `-config=ca-config.json`:指定证书配置文件的路径。在这里,是指定证书配置文件的路径为`ca-config.json`。
# 5. `-profile=kubernetes`:指定证书的配置文件中的一个配置文件模板。在这里,是指定配置文件中的`kubernetes`配置模板。
# 6. `kube-proxy-csr.json`:指定admin的证书签名请求文件(CSR)的路径。在这里,是指定请求文件的路径为`kube-proxy-csr.json`。
# 7. `|`(管道符号):将前一个命令的输出作为下一个命令的输入。
# 8. `cfssljson`:将cfssl工具生成的证书签名请求(CSR)进行解析。
# 9. `-bare /etc/kubernetes/pki/kube-proxy`:指定输出路径和前缀。在这里,是将解析的证书签名请求生成以下文件:`/etc/kubernetes/pki/kube-proxy.pem`(包含了证书)、`/etc/kubernetes/pki/kube-proxy-key.pem`(包含了私钥)。
# 
# 总结来说,这个命令的目的是根据根证书、根证书私钥、证书配置文件、CSR文件等生成Kubernetes Scheduler的证书和私钥文件。

   
# 在《5.高可用配置》选择使用那种高可用方案
# 若使用 haproxy、keepalived 那么为 `--server=https://192.168.1.46:9443`
# 若使用 nginx方案,那么为 `--server=https://127.0.0.1:8443`

kubectl config set-cluster kubernetes     \
  --certificate-authority=/etc/kubernetes/pki/ca.pem     \
  --embed-certs=true     \
  --server=https://127.0.0.1:8443     \
  --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig
# 该命令用于配置一个名为"kubernetes"的集群,并将其应用到/etc/kubernetes/kube-proxy.kubeconfig文件中。
# 
# 该命令的解释如下:
# - `kubectl config set-cluster kubernetes`: 设置一个集群并命名为"kubernetes"。
# - `--certificate-authority=/etc/kubernetes/pki/ca.pem`: 指定集群使用的证书授权机构的路径。
# - `--embed-certs=true`: 该标志指示将证书嵌入到生成的kubeconfig文件中。
# - `--server=https://127.0.0.1:8443`: 指定集群的 API server 位置。
# - `--kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig`: 指定要保存 kubeconfig 文件的路径和名称。

kubectl config set-credentials kube-proxy  \
  --client-certificate=/etc/kubernetes/pki/kube-proxy.pem     \
  --client-key=/etc/kubernetes/pki/kube-proxy-key.pem     \
  --embed-certs=true     \
  --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig
# 这段命令是用于设置 kube-proxy 组件的身份验证凭据,并生成相应的 kubeconfig 文件。
# 
# 解释每个选项的含义如下:
# - `kubectl config set-credentials kube-proxy`:设置 `kube-proxy` 用户的身份验证凭据。
# - `--client-certificate=/etc/kubernetes/pki/kube-proxy.pem`:指定一个客户端证书文件,用于基于证书的身份验证。在这种情况下,指定了 kube-proxy 组件的证书文件路径。
# - `--client-key=/etc/kubernetes/pki/kube-proxy-key.pem`:指定与客户端证书相对应的客户端私钥文件。
# - `--embed-certs=true`:将客户端证书和私钥嵌入到生成的 kubeconfig 文件中。
# - `--kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig`:指定生成的 kubeconfig 文件的路径和名称。
# 
# 该命令的目的是为 kube-proxy 组件生成一个 kubeconfig 文件,以便进行身份验证和访问集群资源。kubeconfig 文件是一个包含了连接到 Kubernetes 集群所需的所有配置信息的文件,包括服务器地址、证书和秘钥等。

kubectl config set-context kube-proxy@kubernetes    \
  --cluster=kubernetes     \
  --user=kube-proxy     \
  --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig
# 该命令用于设置一个名为"kube-proxy@kubernetes"的上下文,具体配置如下:
# 
# 1. --cluster=kubernetes: 指定集群的名称为"kubernetes",这个集群是在当前的kubeconfig文件中已经定义好的。
# 2. --user=kube-proxy: 指定用户的名称为"kube-proxy",这个用户也是在当前的kubeconfig文件中已经定义好的。这个用户用于认证和授权kube-proxy组件访问Kubernetes集群的权限。
# 3. --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig: 指定kubeconfig文件的路径为"/etc/kubernetes/kube-proxy.kubeconfig",这个文件将被用来保存上下文的配置信息。
# 
# 这个命令的作用是将上述的配置信息保存到指定的kubeconfig文件中,以便后续使用该文件进行认证和授权访问Kubernetes集群。

kubectl config use-context kube-proxy@kubernetes  --kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig
# 上述命令是使用`kubectl`命令来配置Kubernetes集群中的调度器组件。
# 
# `kubectl config use-context`命令用于切换`kubectl`当前使用的上下文。上下文是Kubernetes集群、用户和命名空间的组合,用于确定`kubectl`的连接目标。下面解释这个命令的不同部分:
# 
# - `kube-proxy@kubernetes`是一个上下文名称。它指定了使用`kube-proxy`用户和`kubernetes`命名空间的系统级别上下文。系统级别上下文用于操作Kubernetes核心组件。
# 
# - `--kubeconfig=/etc/kubernetes/kube-proxy.kubeconfig`用于指定Kubernetes配置文件的路径。Kubernetes配置文件包含连接到Kubernetes集群所需的身份验证和连接信息。
# 
# 通过运行以上命令,`kubectl`将使用指定的上下文和配置文件,以便在以后的命令中能正确地与Kubernetes集群中的调度器组件进行交互。

3.2.8 创建ServiceAccount Key ——secret

openssl genrsa -out /etc/kubernetes/pki/sa.key 2048
openssl rsa -in /etc/kubernetes/pki/sa.key -pubout -out /etc/kubernetes/pki/sa.pub

# 这两个命令是使用OpenSSL工具生成RSA密钥对。
# 
# 命令1:openssl genrsa -out /etc/kubernetes/pki/sa.key 2048
# 该命令用于生成私钥文件。具体解释如下:
# - openssl:openssl命令行工具。
# - genrsa:生成RSA密钥对。
# - -out /etc/kubernetes/pki/sa.key:指定输出私钥文件的路径和文件名。
# - 2048:指定密钥长度为2048位。
# 
# 命令2:openssl rsa -in /etc/kubernetes/pki/sa.key -pubout -out /etc/kubernetes/pki/sa.pub
# 该命令用于从私钥中导出公钥。具体解释如下:
# - openssl:openssl命令行工具。
# - rsa:与私钥相关的RSA操作。
# - -in /etc/kubernetes/pki/sa.key:指定输入私钥文件的路径和文件名。
# - -pubout:指定输出公钥。
# - -out /etc/kubernetes/pki/sa.pub:指定输出公钥文件的路径和文件名。
# 
# 总结:通过以上两个命令,我们可以使用OpenSSL工具生成一个RSA密钥对,并将私钥保存在/etc/kubernetes/pki/sa.key文件中,将公钥保存在/etc/kubernetes/pki/sa.pub文件中。

3.2.9 将证书发送到其他master节点

#其他节点创建目录
# mkdir  /etc/kubernetes/pki/ -p

for NODE in k8s-master02 k8s-master03; do  for FILE in $(ls /etc/kubernetes/pki | grep -v etcd); do  scp /etc/kubernetes/pki/${FILE} $NODE:/etc/kubernetes/pki/${FILE}; done;  for FILE in admin.kubeconfig controller-manager.kubeconfig scheduler.kubeconfig; do  scp /etc/kubernetes/${FILE} $NODE:/etc/kubernetes/${FILE}; done; done

3.2.10 查看证书

ls /etc/kubernetes/pki/
ll /etc/kubernetes/pki/
总用量 104
-rw-r--r--. 1 root root 1025  5月 26 15:48 admin.csr
-rw-------. 1 root root 1675  5月 26 15:48 admin-key.pem
-rw-r--r--. 1 root root 1444  5月 26 15:48 admin.pem
-rw-r--r--. 1 root root 1691  5月 26 15:46 apiserver.csr
-rw-------. 1 root root 1675  5月 26 15:46 apiserver-key.pem
-rw-r--r--. 1 root root 2082  5月 26 15:46 apiserver.pem
-rw-r--r--. 1 root root 1070  5月 26 15:45 ca.csr
-rw-------. 1 root root 1679  5月 26 15:45 ca-key.pem
-rw-r--r--. 1 root root 1363  5月 26 15:45 ca.pem
-rw-r--r--. 1 root root 1082  5月 26 15:47 controller-manager.csr
-rw-------. 1 root root 1679  5月 26 15:47 controller-manager-key.pem
-rw-r--r--. 1 root root 1501  5月 26 15:47 controller-manager.pem
-rw-r--r--. 1 root root  940  5月 26 15:46 front-proxy-ca.csr
-rw-------. 1 root root 1679  5月 26 15:46 front-proxy-ca-key.pem
-rw-r--r--. 1 root root 1094  5月 26 15:46 front-proxy-ca.pem
-rw-r--r--. 1 root root  903  5月 26 15:46 front-proxy-client.csr
-rw-------. 1 root root 1675  5月 26 15:46 front-proxy-client-key.pem
-rw-r--r--. 1 root root 1188  5月 26 15:46 front-proxy-client.pem
-rw-r--r--. 1 root root 1045  5月 26 15:49 kube-proxy.csr
-rw-------. 1 root root 1679  5月 26 15:49 kube-proxy-key.pem
-rw-r--r--. 1 root root 1464  5月 26 15:49 kube-proxy.pem
-rw-------. 1 root root 1704  5月 26 15:49 sa.key
-rw-r--r--. 1 root root  451  5月 26 15:49 sa.pub
-rw-r--r--. 1 root root 1058  5月 26 15:47 scheduler.csr
-rw-------. 1 root root 1675  5月 26 15:47 scheduler-key.pem
-rw-r--r--. 1 root root 1476  5月 26 15:47 scheduler.pem

# 一共26个就对了
ls /etc/kubernetes/pki/ |wc -l
26

4.k8s系统组件配置

4.1.etcd配置

这个配置文件是用于 etcd 集群的配置,其中包含了一些重要的参数和选项:

- `name`:指定了当前节点的名称,用于集群中区分不同的节点。
- `data-dir`:指定了 etcd 数据的存储目录。
- `wal-dir`:指定了 etcd 数据写入磁盘的目录。
- `snapshot-count`:指定了触发快照的事务数量。
- `heartbeat-interval`:指定了 etcd 集群中节点之间的心跳间隔。
- `election-timeout`:指定了选举超时时间。
- `quota-backend-bytes`:指定了存储的限额,0 表示无限制。
- `listen-peer-urls`:指定了节点之间通信的 URL,使用 HTTPS 协议。
- `listen-client-urls`:指定了客户端访问 etcd 集群的 URL,同时提供了本地访问的 URL。
- `max-snapshots`:指定了快照保留的数量。
- `max-wals`:指定了日志保留的数量。
- `initial-advertise-peer-urls`:指定了节点之间通信的初始 URL。
- `advertise-client-urls`:指定了客户端访问 etcd 集群的初始 URL。
- `discovery`:定义了 etcd 集群发现相关的选项。
- `initial-cluster`:指定了 etcd 集群的初始成员。
- `initial-cluster-token`:指定了集群的 token。
- `initial-cluster-state`:指定了集群的初始状态。
- `strict-reconfig-check`:指定了严格的重新配置检查选项。
- `enable-v2`:启用了 v2 API。
- `enable-pprof`:启用了性能分析。
- `proxy`:设置了代理模式。
- `client-transport-security`:客户端的传输安全配置。
- `peer-transport-security`:节点之间的传输安全配置。
- `debug`:是否启用调试模式。
- `log-package-levels`:日志的输出级别。
- `log-outputs`:指定了日志的输出类型。
- `force-new-cluster`:是否强制创建一个新的集群。

这些参数和选项可以根据实际需求进行调整和配置。

4.1.1master01配置

# 如果要用IPv6那么把IPv4地址修改为IPv6即可
cat > /etc/etcd/etcd.config.yml << EOF 
name: 'k8s-master01'
data-dir: /var/lib/etcd
wal-dir: /var/lib/etcd/wal
snapshot-count: 5000
heartbeat-interval: 100
election-timeout: 1000
quota-backend-bytes: 0
listen-peer-urls: 'https://192.168.1.41:2380'
listen-client-urls: 'https://192.168.1.41:2379,http://127.0.0.1:2379'
max-snapshots: 3
max-wals: 5
cors:
initial-advertise-peer-urls: 'https://192.168.1.41:2380'
advertise-client-urls: 'https://192.168.1.41:2379'
discovery:
discovery-fallback: 'proxy'
discovery-proxy:
discovery-srv:
initial-cluster: 'k8s-master01=https://192.168.1.41:2380,k8s-master02=https://192.168.1.42:2380,k8s-master03=https://192.168.1.43:2380'
initial-cluster-token: 'etcd-k8s-cluster'
initial-cluster-state: 'new'
strict-reconfig-check: false
enable-v2: true
enable-pprof: true
proxy: 'off'
proxy-failure-wait: 5000
proxy-refresh-interval: 30000
proxy-dial-timeout: 1000
proxy-write-timeout: 5000
proxy-read-timeout: 0
client-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
peer-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  peer-client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
debug: false
log-package-levels:
log-outputs: [default]
force-new-cluster: false
EOF

4.1.2master02配置

# 如果要用IPv6那么把IPv4地址修改为IPv6即可
cat > /etc/etcd/etcd.config.yml << EOF 
name: 'k8s-master02'
data-dir: /var/lib/etcd
wal-dir: /var/lib/etcd/wal
snapshot-count: 5000
heartbeat-interval: 100
election-timeout: 1000
quota-backend-bytes: 0
listen-peer-urls: 'https://192.168.1.42:2380'
listen-client-urls: 'https://192.168.1.42:2379,http://127.0.0.1:2379'
max-snapshots: 3
max-wals: 5
cors:
initial-advertise-peer-urls: 'https://192.168.1.42:2380'
advertise-client-urls: 'https://192.168.1.42:2379'
discovery:
discovery-fallback: 'proxy'
discovery-proxy:
discovery-srv:
initial-cluster: 'k8s-master01=https://192.168.1.41:2380,k8s-master02=https://192.168.1.42:2380,k8s-master03=https://192.168.1.43:2380'
initial-cluster-token: 'etcd-k8s-cluster'
initial-cluster-state: 'new'
strict-reconfig-check: false
enable-v2: true
enable-pprof: true
proxy: 'off'
proxy-failure-wait: 5000
proxy-refresh-interval: 30000
proxy-dial-timeout: 1000
proxy-write-timeout: 5000
proxy-read-timeout: 0
client-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
peer-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  peer-client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
debug: false
log-package-levels:
log-outputs: [default]
force-new-cluster: false
EOF

4.1.3master03配置

# 如果要用IPv6那么把IPv4地址修改为IPv6即可
cat > /etc/etcd/etcd.config.yml << EOF 
name: 'k8s-master03'
data-dir: /var/lib/etcd
wal-dir: /var/lib/etcd/wal
snapshot-count: 5000
heartbeat-interval: 100
election-timeout: 1000
quota-backend-bytes: 0
listen-peer-urls: 'https://192.168.1.43:2380'
listen-client-urls: 'https://192.168.1.43:2379,http://127.0.0.1:2379'
max-snapshots: 3
max-wals: 5
cors:
initial-advertise-peer-urls: 'https://192.168.1.43:2380'
advertise-client-urls: 'https://192.168.1.43:2379'
discovery:
discovery-fallback: 'proxy'
discovery-proxy:
discovery-srv:
initial-cluster: 'k8s-master01=https://192.168.1.41:2380,k8s-master02=https://192.168.1.42:2380,k8s-master03=https://192.168.1.43:2380'
initial-cluster-token: 'etcd-k8s-cluster'
initial-cluster-state: 'new'
strict-reconfig-check: false
enable-v2: true
enable-pprof: true
proxy: 'off'
proxy-failure-wait: 5000
proxy-refresh-interval: 30000
proxy-dial-timeout: 1000
proxy-write-timeout: 5000
proxy-read-timeout: 0
client-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
peer-transport-security:
  cert-file: '/etc/kubernetes/pki/etcd/etcd.pem'
  key-file: '/etc/kubernetes/pki/etcd/etcd-key.pem'
  peer-client-cert-auth: true
  trusted-ca-file: '/etc/kubernetes/pki/etcd/etcd-ca.pem'
  auto-tls: true
debug: false
log-package-levels:
log-outputs: [default]
force-new-cluster: false
EOF

4.2.创建service(所有master节点操作)

4.2.1创建etcd.service并启动

cat > /usr/lib/systemd/system/etcd.service << EOF

[Unit]
Description=Etcd Service
Documentation=https://coreos.com/etcd/docs/latest/
After=network.target

[Service]
Type=notify
ExecStart=/usr/local/bin/etcd --config-file=/etc/etcd/etcd.config.yml
Restart=on-failure
RestartSec=10
LimitNOFILE=65536

[Install]
WantedBy=multi-user.target
Alias=etcd3.service

EOF
# 这是一个系统服务配置文件,用于启动和管理Etcd服务。
# 
# [Unit] 部分包含了服务的一些基本信息,它定义了服务的描述和文档链接,并指定了服务应在网络连接之后启动。
# 
# [Service] 部分定义了服务的具体配置。在这里,服务的类型被设置为notify,意味着当服务成功启动时,它将通知系统。ExecStart 指定了启动服务时要执行的命令,这里是运行 /usr/local/bin/etcd 命令并传递一个配置文件 /etc/etcd/etcd.config.yml。Restart 设置为 on-failure,意味着当服务失败时将自动重启,并且在10秒后进行重启。LimitNOFILE 指定了服务的最大文件打开数。
# 
# [Install] 部分定义了服务的安装配置。WantedBy 指定了服务应该被启动的目标,这里是 multi-user.target,表示在系统进入多用户模式时启动。Alias 定义了一个别名,可以通过etcd3.service来引用这个服务。
# 
# 这个配置文件描述了如何启动和管理Etcd服务,并将其安装到系统中。通过这个配置文件,可以确保Etcd服务在系统启动后自动启动,并在出现问题时进行重启。

4.2.2创建etcd证书目录

mkdir /etc/kubernetes/pki/etcd
ln -s /etc/etcd/ssl/* /etc/kubernetes/pki/etcd/

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now etcd.service
# 启用并立即启动etcd.service单元。etcd.service是etcd守护进程的systemd服务单元。

systemctl restart etcd.service
# 重启etcd.service单元,即重新启动etcd守护进程。

systemctl status etcd.service
# etcd.service单元的当前状态,包括运行状态、是否启用等信息。

4.2.3查看etcd状态

# 如果要用IPv6那么把IPv4地址修改为IPv6即可
export ETCDCTL_API=3
etcdctl --endpoints="192.168.1.43:2379,192.168.1.42:2379,192.168.1.41:2379" --cacert=/etc/kubernetes/pki/etcd/etcd-ca.pem --cert=/etc/kubernetes/pki/etcd/etcd.pem --key=/etc/kubernetes/pki/etcd/etcd-key.pem  endpoint status --write-out=table
+-------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
|     ENDPOINT      |        ID        | VERSION | DB SIZE | IS LEADER | IS LEARNER | RAFT TERM | RAFT INDEX | RAFT APPLIED INDEX | ERRORS |
+-------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+
| 192.168.1.43:2379 | 29ba1a59fc9631ce |  3.5.13 |   20 kB |     false |      false |         4 |         14 |                 14 |        |
| 192.168.1.42:2379 | 987ed990c5d78aa4 |  3.5.13 |   20 kB |     false |      false |         4 |         14 |                 14 |        |
| 192.168.1.41:2379 | 3f3d8e1e5a05c016 |  3.5.13 |   20 kB |      true |      false |         4 |         14 |                 14 |        |
+-------------------+------------------+---------+---------+-----------+------------+-----------+------------+--------------------+--------+

# 这个命令是使用etcdctl工具,用于查看指定etcd集群的健康状态。下面是每个参数的详细解释:
# 
# - `--endpoints`:指定要连接的etcd集群节点的地址和端口。在这个例子中,指定了3个节点的地址和端口,分别是`192.168.1.43:2379,192.168.1.42:2379,192.168.1.41:2379`。
# - `--cacert`:指定用于验证etcd服务器证书的CA证书的路径。在这个例子中,指定了CA证书的路径为`/etc/kubernetes/pki/etcd/etcd-ca.pem`。CA证书用于验证etcd服务器证书的有效性。
# - `--cert`:指定用于与etcd服务器进行通信的客户端证书的路径。在这个例子中,指定了客户端证书的路径为`/etc/kubernetes/pki/etcd/etcd.pem`。客户端证书用于在与etcd服务器建立安全通信时进行身份验证。
# - `--key`:指定与客户端证书配对的私钥的路径。在这个例子中,指定了私钥的路径为`/etc/kubernetes/pki/etcd/etcd-key.pem`。私钥用于对通信进行加密解密和签名验证。
# - `endpoint status`:子命令,用于检查etcd集群节点的健康状态。
# - `--write-out`:指定输出的格式。在这个例子中,指定以表格形式输出。
# 
# 通过执行这个命令,可以获取到etcd集群节点的健康状态,并以表格形式展示。

5.高可用配置(在Master服务器上操作)

注意 5.1.1 和5.1.2 二选一即可 *

选择使用那种高可用方案,同时可以俩种都选用,实现内外兼顾的效果,比如:
5.1 的 NGINX方案实现集群内的高可用
5.2 的 haproxy、keepalived 方案实现集群外访问

在《3.2.生成k8s相关证书》

若使用 nginx方案,那么为 --server=https://127.0.0.1:8443
若使用 haproxy、keepalived 那么为 --server=https://192.168.1.46:9443

5.1 NGINX高可用方案

5.1.1 进行编译

# 安装编译环境
yum install gcc -y

# 下载解压nginx二进制文件
# wget http://nginx.org/download/nginx-1.25.3.tar.gz
tar xvf nginx-*.tar.gz
cd nginx-*

# 进行编译
./configure --with-stream --without-http --without-http_uwsgi_module --without-http_scgi_module --without-http_fastcgi_module
make && make install 

# 拷贝编译好的nginx
node='k8s-master02 k8s-master03 k8s-node01 k8s-node02'
for NODE in $node; do scp -r /usr/local/nginx/ $NODE:/usr/local/nginx/; done

# 这是一系列命令行指令,用于编译和安装软件。
# 
# 1. `./configure` 是用于配置软件的命令。在这个例子中,配置的软件是一个Web服务器,指定了一些选项来启用流模块,并禁用了HTTP、uwsgi、scgi和fastcgi模块。
# 2. `--with-stream` 指定启用流模块。流模块通常用于代理TCP和UDP流量。
# 3. `--without-http` 指定禁用HTTP模块。这意味着编译的软件将没有HTTP服务器功能。
# 4. `--without-http_uwsgi_module` 指定禁用uwsgi模块。uwsgi是一种Web服务器和应用服务器之间的通信协议。
# 5. `--without-http_scgi_module` 指定禁用scgi模块。scgi是一种用于将Web服务器请求传递到应用服务器的协议。
# 6. `--without-http_fastcgi_module` 指定禁用fastcgi模块。fastcgi是一种用于在Web服务器和应用服务器之间交换数据的协议。
# 7. `make` 是用于编译软件的命令。该命令将根据之前的配置生成可执行文件。
# 8. `make install` 用于安装软件。该命令将生成的可执行文件和其他必要文件复制到系统的适当位置,以便可以使用该软件。
# 
# 总之,这个命令序列用于编译一个配置了特定选项的Web服务器,并将其安装到系统中。

5.1.2 写入启动配置

在所有主机上执行

# 写入nginx配置文件
cat > /usr/local/nginx/conf/kube-nginx.conf < /etc/systemd/system/kube-nginx.service <

5.2 keepalived和haproxy 高可用方案

5.2.1安装keepalived和haproxy服务

systemctl disable --now firewalld
setenforce 0
sed -i 's#SELINUX=enforcing#SELINUX=disabled#g' /etc/selinux/config
yum -y install keepalived haproxy

5.2.2修改haproxy配置文件(配置文件一样)

# cp /etc/haproxy/haproxy.cfg /etc/haproxy/haproxy.cfg.bak

cat >/etc/haproxy/haproxy.cfg<<"EOF"
global
 maxconn 2000
 ulimit-n 16384
 log 127.0.0.1 local0 err
 stats timeout 30s

defaults
 log global
 mode http
 option httplog
 timeout connect 5000
 timeout client 50000
 timeout server 50000
 timeout http-request 15s
 timeout http-keep-alive 15s


frontend monitor-in
 bind *:33305
 mode http
 option httplog
 monitor-uri /monitor

frontend k8s-master
 bind 0.0.0.0:9443
 bind 127.0.0.1:9443
 mode tcp
 option tcplog
 tcp-request inspect-delay 5s
 default_backend k8s-master


backend k8s-master
 mode tcp
 option tcplog
 option tcp-check
 balance roundrobin
 default-server inter 10s downinter 5s rise 2 fall 2 slowstart 60s maxconn 250 maxqueue 256 weight 100
 server  k8s-master01  192.168.1.41:6443 check
 server  k8s-master02  192.168.1.42:6443 check
 server  k8s-master03  192.168.1.43:6443 check
EOF

参数

这段配置代码是指定了一个HAProxy负载均衡器的配置。下面对各部分进行详细解释:
1. global:
   - maxconn 2000: 设置每个进程的最大连接数为2000。
   - ulimit-n 16384: 设置每个进程的最大文件描述符数为16384。
   - log 127.0.0.1 local0 err: 指定日志的输出地址为本地主机的127.0.0.1,并且只记录错误级别的日志。
   - stats timeout 30s: 设置查看负载均衡器统计信息的超时时间为30秒。

2. defaults:
   - log global: 使默认日志与global部分相同。
   - mode http: 设定负载均衡器的工作模式为HTTP模式。
   - option httplog: 使负载均衡器记录HTTP协议的日志。
   - timeout connect 5000: 设置与后端服务器建立连接的超时时间为5秒。
   - timeout client 50000: 设置与客户端的连接超时时间为50秒。
   - timeout server 50000: 设置与后端服务器连接的超时时间为50秒。
   - timeout http-request 15s: 设置处理HTTP请求的超时时间为15秒。
   - timeout http-keep-alive 15s: 设置保持HTTP连接的超时时间为15秒。

3. frontend monitor-in:
   - bind *:33305: 监听所有IP地址的33305端口。
   - mode http: 设定frontend的工作模式为HTTP模式。
   - option httplog: 记录HTTP协议的日志。
   - monitor-uri /monitor: 设置监控URI为/monitor。

4. frontend k8s-master:
   - bind 0.0.0.0:9443: 监听所有IP地址的9443端口。
   - bind 127.0.0.1:9443: 监听本地主机的9443端口。
   - mode tcp: 设定frontend的工作模式为TCP模式。
   - option tcplog: 记录TCP协议的日志。
   - tcp-request inspect-delay 5s: 设置在接收到请求后延迟5秒进行检查。
   - default_backend k8s-master: 设置默认的后端服务器组为k8s-master。

5. backend k8s-master:
   - mode tcp: 设定backend的工作模式为TCP模式。
   - option tcplog: 记录TCP协议的日志。
   - option tcp-check: 启用TCP检查功能。
   - balance roundrobin: 使用轮询算法进行负载均衡。
   - default-server inter 10s downinter 5s rise 2 fall 2 slowstart 60s maxconn 250 maxqueue 256 weight 100: 设置默认的服务器参数。
   - server k8s-master01 192.168.1.41:6443 check: 增加一个名为k8s-master01的服务器,IP地址为192.168.1.41,端口号为6443,并对其进行健康检查。
   - server k8s-master02 192.168.1.42:6443 check: 增加一个名为k8s-master02的服务器,IP地址为192.168.1.42,端口号为6443,并对其进行健康检查。
   - server k8s-master03 192.168.1.43:6443 check: 增加一个名为k8s-master03的服务器,IP地址为192.168.1.43,端口号为6443,并对其进行健康检查。

以上就是这段配置代码的详细解释。它主要定义了全局配置、默认配置、前端监听和后端服务器组的相关参数和设置。通过这些配置,可以实现负载均衡和监控功能。

5.2.3Master01配置keepalived master节点

#cp /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.bak

cat > /etc/keepalived/keepalived.conf << EOF
! Configuration File for keepalived

global_defs {
    router_id LVS_DEVEL
}
vrrp_script chk_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 5 
    weight -5
    fall 2
    rise 1
}
vrrp_instance VI_1 {
    state MASTER
    # 注意网卡名
    interface ens18 
    mcast_src_ip 192.168.1.41
    virtual_router_id 51
    priority 100
    nopreempt
    advert_int 2
    authentication {
        auth_type PASS
        auth_pass K8SHA_KA_AUTH
    }
    virtual_ipaddress {
        192.168.1.46
    }
    track_script {
      chk_apiserver 
} }

EOF

5.2.4Master02配置keepalived backup节点

# cp /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.bak

cat > /etc/keepalived/keepalived.conf << EOF
! Configuration File for keepalived

global_defs {
    router_id LVS_DEVEL
}
vrrp_script chk_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 5 
    weight -5
    fall 2
    rise 1

}
vrrp_instance VI_1 {
    state BACKUP
    # 注意网卡名
    interface ens18
    mcast_src_ip 192.168.1.42
    virtual_router_id 51
    priority 80
    nopreempt
    advert_int 2
    authentication {
        auth_type PASS
        auth_pass K8SHA_KA_AUTH
    }
    virtual_ipaddress {
        192.168.1.46
    }
    track_script {
      chk_apiserver 
} }

EOF

5.2.5Master03配置keepalived backup节点

# cp /etc/keepalived/keepalived.conf /etc/keepalived/keepalived.conf.bak

cat > /etc/keepalived/keepalived.conf << EOF
! Configuration File for keepalived

global_defs {
    router_id LVS_DEVEL
}
vrrp_script chk_apiserver {
    script "/etc/keepalived/check_apiserver.sh"
    interval 5 
    weight -5
    fall 2
    rise 1

}
vrrp_instance VI_1 {
    state BACKUP
    # 注意网卡名
    interface ens18
    mcast_src_ip 192.168.1.43
    virtual_router_id 51
    priority 50
    nopreempt
    advert_int 2
    authentication {
        auth_type PASS
        auth_pass K8SHA_KA_AUTH
    }
    virtual_ipaddress {
        192.168.1.46
    }
    track_script {
      chk_apiserver 
} }

EOF

参数

这是一个用于配置keepalived的配置文件。下面是对每个部分的详细解释:

- `global_defs`部分定义了全局参数。
- `router_id`参数指定了当前路由器的标识,这里设置为"LVS_DEVEL"。

- `vrrp_script`部分定义了一个VRRP脚本。`chk_apiserver`是脚本的名称,
    - `script`参数指定了脚本的路径。该脚本每5秒执行一次,返回值为0表示服务正常,返回值为1表示服务异常。
    - `weight`参数指定了根据脚本返回的值来调整优先级,这里设置为-5。
    - `fall`参数指定了失败阈值,当连续2次脚本返回值为1时认为服务异常。
    - `rise`参数指定了恢复阈值,当连续1次脚本返回值为0时认为服务恢复正常。

- `vrrp_instance`部分定义了一个VRRP实例。`VI_1`是实例的名称。
    - `state`参数指定了当前实例的状态,这里设置为MASTER表示当前实例是主节点。
    - `interface`参数指定了要监听的网卡,这里设置为ens18。
    - `mcast_src_ip`参数指定了VRRP报文的源IP地址,这里设置为192.168.1.41。
    - `virtual_router_id`参数指定了虚拟路由器的ID,这里设置为51。
    - `priority`参数指定了实例的优先级,优先级越高(数值越大)越有可能被选为主节点。
    - `nopreempt`参数指定了当主节点失效后不要抢占身份,即不要自动切换为主节点。
    - `advert_int`参数指定了发送广播的间隔时间,这里设置为2秒。
    - `authentication`部分指定了认证参数
    	- `auth_type`参数指定了认证类型,这里设置为PASS表示使用密码认证,
    	- `auth_pass`参数指定了认证密码,这里设置为K8SHA_KA_AUTH。
    - `virtual_ipaddress`部分指定了虚拟IP地址,这里设置为192.168.1.46。
    - `track_script`部分指定了要跟踪的脚本,这里跟踪了chk_apiserver脚本。

5.2.6健康检查脚本配置(lb主机)

cat >  /etc/keepalived/check_apiserver.sh << EOF
#!/bin/bash

err=0
for k in \$(seq 1 3)
do
    check_code=\$(pgrep haproxy)
    if [[ \$check_code == "" ]]; then
        err=\$(expr \$err + 1)
        sleep 1
        continue
    else
        err=0
        break
    fi
done

if [[ \$err != "0" ]]; then
    echo "systemctl stop keepalived"
    /usr/bin/systemctl stop keepalived
    exit 1
else
    exit 0
fi
EOF

# 给脚本授权

chmod +x /etc/keepalived/check_apiserver.sh

# 这段脚本是一个简单的bash脚本,主要用来检查是否有名为haproxy的进程正在运行。
# 
# 脚本的主要逻辑如下:
# 1. 首先设置一个变量err为0,用来记录错误次数。
# 2. 使用一个循环,在循环内部执行以下操作:
#    a. 使用pgrep命令检查是否有名为haproxy的进程在运行。如果不存在该进程,将err加1,并暂停1秒钟,然后继续下一次循环。
#    b. 如果存在haproxy进程,将err重置为0,并跳出循环。
# 3. 检查err的值,如果不为0,表示检查失败,输出一条错误信息并执行“systemctl stop keepalived”命令停止keepalived进程,并退出脚本返回1。
# 4. 如果err的值为0,表示检查成功,退出脚本返回0。
# 
# 该脚本的主要作用是检查是否存在运行中的haproxy进程,如果无法检测到haproxy进程,将停止keepalived进程并返回错误状态。如果haproxy进程存在,则返回成功状态。这个脚本可能是作为一个健康检查脚本的一部分,在确保haproxy服务可用的情况下,才继续运行其他操作。

5.2.7启动服务

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。
systemctl enable --now haproxy.service
# 启用并立即启动haproxy.service单元。haproxy.service是haproxy守护进程的systemd服务单元。
systemctl enable --now keepalived.service
# 启用并立即启动keepalived.service单元。keepalived.service是keepalived守护进程的systemd服务单元。
systemctl status haproxy.service
# haproxy.service单元的当前状态,包括运行状态、是否启用等信息。
systemctl status keepalived.service
# keepalived.service单元的当前状态,包括运行状态、是否启用等信息。

5.2.8测试高可用

# 能ping同
[root@k8s-node02 ~]# ping 192.168.1.46

# 能telnet访问
[root@k8s-node02 ~]# telnet 192.168.1.46 9443

# 关闭主节点,看vip是否漂移到备节点

6.k8s组件配置

所有k8s节点创建以下目录

mkdir -p /etc/kubernetes/manifests/ /etc/systemd/system/kubelet.service.d /var/lib/kubelet /var/log/kubernetes

6.1.创建apiserver(所有master节点)

6.1.1master01节点配置

cat > /usr/lib/systemd/system/kube-apiserver.service << EOF

[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
      --v=2  \\
      --allow-privileged=true  \\
      --bind-address=0.0.0.0  \\
      --secure-port=6443  \\
      --advertise-address=192.168.1.41 \\
      --service-cluster-ip-range=10.96.0.0/12,fd00:1111::/112  \\
      --service-node-port-range=30000-32767  \\
      --etcd-servers=https://192.168.1.41:2379,https://192.168.1.42:2379,https://192.168.1.43:2379 \\
      --etcd-cafile=/etc/etcd/ssl/etcd-ca.pem  \\
      --etcd-certfile=/etc/etcd/ssl/etcd.pem  \\
      --etcd-keyfile=/etc/etcd/ssl/etcd-key.pem  \\
      --client-ca-file=/etc/kubernetes/pki/ca.pem  \\
      --tls-cert-file=/etc/kubernetes/pki/apiserver.pem  \\
      --tls-private-key-file=/etc/kubernetes/pki/apiserver-key.pem  \\
      --kubelet-client-certificate=/etc/kubernetes/pki/apiserver.pem  \\
      --kubelet-client-key=/etc/kubernetes/pki/apiserver-key.pem  \\
      --service-account-key-file=/etc/kubernetes/pki/sa.pub  \\
      --service-account-signing-key-file=/etc/kubernetes/pki/sa.key  \\
      --service-account-issuer=https://kubernetes.default.svc.cluster.local \\
      --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname  \\
      --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,ResourceQuota  \
      --authorization-mode=Node,RBAC  \\
      --enable-bootstrap-token-auth=true  \\
      --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem  \\
      --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.pem  \\
      --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client-key.pem  \\
      --requestheader-allowed-names=aggregator  \\
      --requestheader-group-headers=X-Remote-Group  \\
      --requestheader-extra-headers-prefix=X-Remote-Extra-  \\
      --requestheader-username-headers=X-Remote-User \\
      --enable-aggregator-routing=true
Restart=on-failure
RestartSec=10s
LimitNOFILE=65535

[Install]
WantedBy=multi-user.target

EOF

6.1.2master02节点配置

cat > /usr/lib/systemd/system/kube-apiserver.service << EOF
[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
      --v=2  \\
      --allow-privileged=true  \\
      --bind-address=0.0.0.0  \\
      --secure-port=6443  \\
      --advertise-address=192.168.1.42 \\
      --service-cluster-ip-range=10.96.0.0/12,fd00:1111::/112  \\
      --service-node-port-range=30000-32767  \\
      --etcd-servers=https://192.168.1.41:2379,https://192.168.1.42:2379,https://192.168.1.43:2379 \\
      --etcd-cafile=/etc/etcd/ssl/etcd-ca.pem  \\
      --etcd-certfile=/etc/etcd/ssl/etcd.pem  \\
      --etcd-keyfile=/etc/etcd/ssl/etcd-key.pem  \\
      --client-ca-file=/etc/kubernetes/pki/ca.pem  \\
      --tls-cert-file=/etc/kubernetes/pki/apiserver.pem  \\
      --tls-private-key-file=/etc/kubernetes/pki/apiserver-key.pem  \\
      --kubelet-client-certificate=/etc/kubernetes/pki/apiserver.pem  \\
      --kubelet-client-key=/etc/kubernetes/pki/apiserver-key.pem  \\
      --service-account-key-file=/etc/kubernetes/pki/sa.pub  \\
      --service-account-signing-key-file=/etc/kubernetes/pki/sa.key  \\
      --service-account-issuer=https://kubernetes.default.svc.cluster.local \\
      --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname  \\
      --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,ResourceQuota  \\
      --authorization-mode=Node,RBAC  \\
      --enable-bootstrap-token-auth=true  \\
      --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem  \\
      --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.pem  \\
      --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client-key.pem  \\
      --requestheader-allowed-names=aggregator  \\
      --requestheader-group-headers=X-Remote-Group  \\
      --requestheader-extra-headers-prefix=X-Remote-Extra-  \\
      --requestheader-username-headers=X-Remote-User \\
      --enable-aggregator-routing=true

Restart=on-failure
RestartSec=10s
LimitNOFILE=65535

[Install]
WantedBy=multi-user.target

EOF

6.1.3master03节点配置

cat > /usr/lib/systemd/system/kube-apiserver.service  << EOF

[Unit]
Description=Kubernetes API Server
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-apiserver \\
      --v=2  \\
      --allow-privileged=true  \\
      --bind-address=0.0.0.0  \\
      --secure-port=6443  \\
      --advertise-address=192.168.1.43 \\
      --service-cluster-ip-range=10.96.0.0/12,fd00:1111::/112  \\
      --service-node-port-range=30000-32767  \\
      --etcd-servers=https://192.168.1.41:2379,https://192.168.1.42:2379,https://192.168.1.43:2379 \\
      --etcd-cafile=/etc/etcd/ssl/etcd-ca.pem  \\
      --etcd-certfile=/etc/etcd/ssl/etcd.pem  \\
      --etcd-keyfile=/etc/etcd/ssl/etcd-key.pem  \\
      --client-ca-file=/etc/kubernetes/pki/ca.pem  \\
      --tls-cert-file=/etc/kubernetes/pki/apiserver.pem  \\
      --tls-private-key-file=/etc/kubernetes/pki/apiserver-key.pem  \\
      --kubelet-client-certificate=/etc/kubernetes/pki/apiserver.pem  \\
      --kubelet-client-key=/etc/kubernetes/pki/apiserver-key.pem  \\
      --service-account-key-file=/etc/kubernetes/pki/sa.pub  \\
      --service-account-signing-key-file=/etc/kubernetes/pki/sa.key  \\
      --service-account-issuer=https://kubernetes.default.svc.cluster.local \\
      --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname  \\
      --enable-admission-plugins=NamespaceLifecycle,LimitRanger,ServiceAccount,DefaultStorageClass,DefaultTolerationSeconds,NodeRestriction,ResourceQuota  \\
      --authorization-mode=Node,RBAC  \\
      --enable-bootstrap-token-auth=true  \\
      --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem  \\
      --proxy-client-cert-file=/etc/kubernetes/pki/front-proxy-client.pem  \\
      --proxy-client-key-file=/etc/kubernetes/pki/front-proxy-client-key.pem  \\
      --requestheader-allowed-names=aggregator  \\
      --requestheader-group-headers=X-Remote-Group  \\
      --requestheader-extra-headers-prefix=X-Remote-Extra-  \\
      --requestheader-username-headers=X-Remote-User \\
      --enable-aggregator-routing=true

Restart=on-failure
RestartSec=10s
LimitNOFILE=65535

[Install]
WantedBy=multi-user.target

EOF

参数

该配置文件是用于定义Kubernetes API Server的systemd服务的配置。systemd是一个用于启动和管理Linux系统服务的守护进程。

[Unit]
- Description: 服务的描述信息,用于显示在日志和系统管理工具中。
- Documentation: 提供关于服务的文档链接。
- After: 规定服务依赖于哪些其他服务或单元。在这个例子中,API Server服务在网络目标启动之后启动。

[Service]
- ExecStart: 定义服务的命令行参数和命令。这里指定了API Server的启动命令,包括各种参数选项。
- Restart: 指定当服务退出时应该如何重新启动。在这个例子中,服务在失败时将被重新启动。
- RestartSec: 指定两次重新启动之间的等待时间。
- LimitNOFILE: 指定进程可以打开的文件描述符的最大数量。

[Install]
- WantedBy: 指定服务应该安装到哪个系统目标。在这个例子中,服务将被安装到multi-user.target目标,以便在多用户模式下启动。

上述配置文件中定义的kube-apiserver服务将以指定的参数运行,这些参数包括:

- `--v=2` 指定日志级别为2,打印详细的API Server日志。
- `--allow-privileged=true` 允许特权容器运行。
- `--bind-address=0.0.0.0` 绑定API Server监听的IP地址。
- `--secure-port=6443` 指定API Server监听的安全端口。
- `--advertise-address=192.168.1.41` 广告API Server的地址。
- `--service-cluster-ip-range=10.96.0.0/12,fd00:1111::/112` 指定服务CIDR范围。
- `--service-node-port-range=30000-32767` 指定NodePort的范围。
- `--etcd-servers=https://192.168.1.41:2379,https://192.168.1.42:2379,https://192.168.1.43:2379` 指定etcd服务器的地址。
- `--etcd-cafile` 指定etcd服务器的CA证书。
- `--etcd-certfile` 指定etcd服务器的证书。
- `--etcd-keyfile` 指定etcd服务器的私钥。
- `--client-ca-file` 指定客户端CA证书。
- `--tls-cert-file` 指定服务的证书。
- `--tls-private-key-file` 指定服务的私钥。
- `--kubelet-client-certificate` 和 `--kubelet-client-key` 指定与kubelet通信的客户端证书和私钥。
- `--service-account-key-file` 指定服务账户公钥文件。
- `--service-account-signing-key-file` 指定服务账户签名密钥文件。
- `--service-account-issuer` 指定服务账户的发布者。
- `--kubelet-preferred-address-types` 指定kubelet通信时的首选地址类型。
- `--enable-admission-plugins` 启用一系列准入插件。
- `--authorization-mode` 指定授权模式。
- `--enable-bootstrap-token-auth` 启用引导令牌认证。
- `--requestheader-client-ca-file` 指定请求头中的客户端CA证书。
- `--proxy-client-cert-file` 和 `--proxy-client-key-file` 指定代理客户端的证书和私钥。
- `--requestheader-allowed-names` 指定请求头中允许的名字。
- `--requestheader-group-headers` 指定请求头中的组头。
- `--requestheader-extra-headers-prefix` 指定请求头中的额外头前缀。
- `--requestheader-username-headers` 指定请求头中的用户名头。
- `--enable-aggregator-routing` 启用聚合路由。

整个配置文件为Kubernetes API Server提供了必要的参数,以便正确地启动和运行。

6.1.4启动apiserver(所有master节点)

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now kube-apiserver.service
# 启用并立即启动kube-apiserver.service单元。kube-apiserver.service是kube-apiserver守护进程的systemd服务单元。

systemctl restart kube-apiserver.service
# 重启kube-apiserver.service单元,即重新启动etcd守护进程。

systemctl status kube-apiserver.service
# kube-apiserver.service单元的当前状态,包括运行状态、是否启用等信息。

6.2.配置kube-controller-manager service

# 所有master节点配置,且配置相同
# 172.16.0.0/12为pod网段,按需求设置你自己的网段

cat > /usr/lib/systemd/system/kube-controller-manager.service << EOF

[Unit]
Description=Kubernetes Controller Manager
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-controller-manager \\
      --v=2 \\
      --bind-address=0.0.0.0 \\
      --root-ca-file=/etc/kubernetes/pki/ca.pem \\
      --cluster-signing-cert-file=/etc/kubernetes/pki/ca.pem \\
      --cluster-signing-key-file=/etc/kubernetes/pki/ca-key.pem \\
      --service-account-private-key-file=/etc/kubernetes/pki/sa.key \\
      --kubeconfig=/etc/kubernetes/controller-manager.kubeconfig \\
      --leader-elect=true \\
      --use-service-account-credentials=true \\
      --node-monitor-grace-period=40s \\
      --node-monitor-period=5s \\
      --controllers=*,bootstrapsigner,tokencleaner \\
      --allocate-node-cidrs=true \\
      --service-cluster-ip-range=10.96.0.0/12,fd00:1111::/112 \\
      --cluster-cidr=172.16.0.0/12,fc00:2222::/112 \\
      --node-cidr-mask-size-ipv4=24 \\
      --node-cidr-mask-size-ipv6=120 \\
      --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem

Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

EOF

参数

这是一个用于启动 Kubernetes 控制器管理器的 systemd 服务单元文件。下面是对每个部分的详细解释:

[Unit]:单元的基本信息部分,用于描述和标识这个服务单元。
Description:服务单元的描述信息,说明了该服务单元的作用,这里是 Kubernetes 控制器管理器。
Documentation:可选项,提供了关于该服务单元的文档链接。
After:定义了该服务单元在哪些其他单元之后启动,这里是 network.target,即在网络服务启动之后启动。

[Service]:定义了服务的运行参数和行为。
ExecStart:指定服务启动时执行的命令,这里是 /usr/local/bin/kube-controller-manager,并通过后续的行继续传递了一系列的参数设置。
Restart:定义了服务在退出后的重新启动策略,这里设置为 always,表示总是重新启动服务。
RestartSec:定义了重新启动服务的时间间隔,这里设置为 10 秒。

[Install]:定义了如何安装和启用服务单元。
WantedBy:指定了服务单元所属的 target,这里是 multi-user.target,表示启动多用户模式下的服务。
在 ExecStart 中传递的参数说明如下:

--v=2:设置日志的详细级别为 2。
--bind-address=0.0.0.0:绑定的 IP 地址,用于监听 Kubernetes 控制平面的请求,这里设置为 0.0.0.0,表示监听所有网络接口上的请求。
--root-ca-file:根证书文件的路径,用于验证其他组件的证书。
--cluster-signing-cert-file:用于签名集群证书的证书文件路径。
--cluster-signing-key-file:用于签名集群证书的私钥文件路径。
--service-account-private-key-file:用于签名服务账户令牌的私钥文件路径。
--kubeconfig:kubeconfig 文件的路径,包含了与 Kubernetes API 服务器通信所需的配置信息。
--leader-elect=true:启用 Leader 选举机制,确保只有一个控制器管理器作为 leader 在运行。
--use-service-account-credentials=true:使用服务账户的凭据进行认证和授权。
--node-monitor-grace-period=40s:节点监控的优雅退出时间,节点长时间不响应时会触发节点驱逐。
--node-monitor-period=5s:节点监控的检测周期,用于检测节点是否正常运行。
--controllers:指定要运行的控制器类型,在这里使用了通配符 *,表示运行所有的控制器,同时还包括了 bootstrapsigner 和 tokencleaner 控制器。
--allocate-node-cidrs=true:为节点分配 CIDR 子网,用于分配 Pod 网络地址。
--service-cluster-ip-range:定义 Service 的 IP 范围,这里设置为 10.96.0.0/12 和 fd00::/108。
--cluster-cidr:定义集群的 CIDR 范围,这里设置为 172.16.0.0/12 和 fc00::/48。
--node-cidr-mask-size-ipv4:分配给每个节点的 IPv4 子网掩码大小,默认是 24。
--node-cidr-mask-size-ipv6:分配给每个节点的 IPv6 子网掩码大小,默认是 120。
--requestheader-client-ca-file:设置请求头中客户端 CA 的证书文件路径,用于认证请求头中的 CA 证书。

这个服务单元文件描述了 Kubernetes 控制器管理器的启动参数和行为,并且定义了服务的依赖关系和重新启动策略。通过 systemd 启动该服务单元,即可启动 Kubernetes 控制器管理器组件。

6.2.1启动kube-controller-manager,并查看状态

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now kube-controller-manager.service
# 启用并立即启动kube-controller-manager.service单元。kube-controller-manager.service是kube-controller-manager守护进程的systemd服务单元。

systemctl restart kube-controller-manager.service
# 重启kube-controller-manager.service单元,即重新启动etcd守护进程。

systemctl status kube-controller-manager.service
# kube-controller-manager.service单元的当前状态,包括运行状态、是否启用等信息。

6.3.配置kube-scheduler service

6.3.1所有master节点配置,且配置相同

cat > /usr/lib/systemd/system/kube-scheduler.service << EOF

[Unit]
Description=Kubernetes Scheduler
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-scheduler \\
      --v=2 \\
      --bind-address=0.0.0.0 \\
      --leader-elect=true \\
      --kubeconfig=/etc/kubernetes/scheduler.kubeconfig

Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

EOF

参数

这是一个用于启动 Kubernetes 调度器的 systemd 服务单元文件。下面是对每个部分的详细解释:

[Unit]:单元的基本信息部分,用于描述和标识这个服务单元。
Description:服务单元的描述信息,说明了该服务单元的作用,这里是 Kubernetes 调度器。
Documentation:可选项,提供了关于该服务单元的文档链接。
After:定义了该服务单元在哪些其他单元之后启动,这里是 network.target,即在网络服务启动之后启动。

[Service]:定义了服务的运行参数和行为。
ExecStart:指定服务启动时执行的命令,这里是 /usr/local/bin/kube-scheduler,并通过后续的行继续传递了一系列的参数设置。
Restart:定义了服务在退出后的重新启动策略,这里设置为 always,表示总是重新启动服务。
RestartSec:定义了重新启动服务的时间间隔,这里设置为 10 秒。

[Install]:定义了如何安装和启用服务单元。
WantedBy:指定了服务单元所属的 target,这里是 multi-user.target,表示启动多用户模式下的服务。

在 ExecStart 中传递的参数说明如下:

--v=2:设置日志的详细级别为 2。
--bind-address=0.0.0.0:绑定的 IP 地址,用于监听 Kubernetes 控制平面的请求,这里设置为 0.0.0.0,表示监听所有网络接口上的请求。
--leader-elect=true:启用 Leader 选举机制,确保只有一个调度器作为 leader 在运行。
--kubeconfig=/etc/kubernetes/scheduler.kubeconfig:kubeconfig 文件的路径,包含了与 Kubernetes API 服务器通信所需的配置信息。

这个服务单元文件描述了 Kubernetes 调度器的启动参数和行为,并且定义了服务的依赖关系和重新启动策略。通过 systemd 启动该服务单元,即可启动 Kubernetes 调度器组件。

6.3.2启动并查看服务状态

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now kube-scheduler.service
# 启用并立即启动kube-scheduler.service单元。kube-scheduler.service是kube-scheduler守护进程的systemd服务单元。

systemctl restart kube-scheduler.service
# 重启kube-scheduler.service单元,即重新启动etcd守护进程。

systemctl status kube-scheduler.service
# kube-scheduler.service单元的当前状态,包括运行状态、是否启用等信息。

7.TLS Bootstrapping配置

7.1在master01上配置

# 在《5.高可用配置》选择使用那种高可用方案
# 若使用 haproxy、keepalived 那么为 `--server=https://192.168.1.46:9443`
# 若使用 nginx方案,那么为 `--server=https://127.0.0.1:8443`

kubectl config set-cluster kubernetes     \
--certificate-authority=/etc/kubernetes/pki/ca.pem     \
--embed-certs=true     --server=https://127.0.0.1:8443     \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig
# 这是一个使用 kubectl 命令设置 Kubernetes 集群配置的命令示例。下面是对每个选项的详细解释:
# 
# config set-cluster kubernetes:指定要设置的集群名称为 "kubernetes",表示要修改名为 "kubernetes" 的集群配置。
# --certificate-authority=/etc/kubernetes/pki/ca.pem:指定证书颁发机构(CA)的证书文件路径,用于验证服务器证书的有效性。
# --embed-certs=true:将证书文件嵌入到生成的 kubeconfig 文件中。这样可以避免在 kubeconfig 文件中引用外部证书文件。
# --server=https://127.0.0.1:8443:指定 Kubernetes API 服务器的地址和端口,这里使用的是 https 协议和本地地址(127.0.0.1),端口号为 8443。你可以根据实际环境修改该参数。
# --kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig:指定 kubeconfig 文件的路径和名称,这里是 /etc/kubernetes/bootstrap-kubelet.kubeconfig。
# 通过执行此命令,你可以设置名为 "kubernetes" 的集群配置,并提供 CA 证书、API 服务器地址和端口,并将这些配置信息嵌入到 bootstrap-kubelet.kubeconfig 文件中。这个 kubeconfig 文件可以用于认证和授权 kubelet 组件与 Kubernetes API 服务器之间的通信。请确保路径和文件名与实际环境中的配置相匹配。

kubectl config set-credentials tls-bootstrap-token-user     \
--token=c8ad9c.2e4d610cf3e7426e \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig
# 这是一个使用 kubectl 命令设置凭证信息的命令示例。下面是对每个选项的详细解释:
# 
# config set-credentials tls-bootstrap-token-user:指定要设置的凭证名称为 "tls-bootstrap-token-user",表示要修改名为 "tls-bootstrap-token-user" 的用户凭证配置。
# --token=c8ad9c.2e4d610cf3e7426e:指定用户的身份验证令牌(token)。在这个示例中,令牌是 c8ad9c.2e4d610cf3e7426e。你可以根据实际情况修改该令牌。
# --kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig:指定 kubeconfig 文件的路径和名称,这里是 /etc/kubernetes/bootstrap-kubelet.kubeconfig。
# 通过执行此命令,你可以设置名为 "tls-bootstrap-token-user" 的用户凭证,并将令牌信息加入到 bootstrap-kubelet.kubeconfig 文件中。这个 kubeconfig 文件可以用于认证和授权 kubelet 组件与 Kubernetes API 服务器之间的通信。请确保路径和文件名与实际环境中的配置相匹配。

kubectl config set-context tls-bootstrap-token-user@kubernetes     \
--cluster=kubernetes     \
--user=tls-bootstrap-token-user     \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig
# 这是一个使用 kubectl 命令设置上下文信息的命令示例。下面是对每个选项的详细解释:
# 
# config set-context tls-bootstrap-token-user@kubernetes:指定要设置的上下文名称为 "tls-bootstrap-token-user@kubernetes",表示要修改名为 "tls-bootstrap-token-user@kubernetes" 的上下文配置。
# --cluster=kubernetes:指定上下文关联的集群名称为 "kubernetes",表示使用名为 "kubernetes" 的集群配置。
# --user=tls-bootstrap-token-user:指定上下文关联的用户凭证名称为 "tls-bootstrap-token-user",表示使用名为 "tls-bootstrap-token-user" 的用户凭证配置。
# --kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig:指定 kubeconfig 文件的路径和名称,这里是 /etc/kubernetes/bootstrap-kubelet.kubeconfig。
# 通过执行此命令,你可以设置名为 "tls-bootstrap-token-user@kubernetes" 的上下文,并将其关联到名为 "kubernetes" 的集群配置和名为 "tls-bootstrap-token-user" 的用户凭证配置。这样,bootstrap-kubelet.kubeconfig 文件就包含了完整的上下文信息,可以用于指定与 Kubernetes 集群建立连接时要使用的集群和凭证。请确保路径和文件名与实际环境中的配置相匹配。

kubectl config use-context tls-bootstrap-token-user@kubernetes     \
--kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig
# 这是一个使用 kubectl 命令设置当前上下文的命令示例。下面是对每个选项的详细解释:
# 
# config use-context tls-bootstrap-token-user@kubernetes:指定要使用的上下文名称为 "tls-bootstrap-token-user@kubernetes",表示要将当前上下文切换为名为 "tls-bootstrap-token-user@kubernetes" 的上下文。
# --kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig:指定 kubeconfig 文件的路径和名称,这里是 /etc/kubernetes/bootstrap-kubelet.kubeconfig。
# 通过执行此命令,你可以将当前上下文设置为名为 "tls-bootstrap-token-user@kubernetes" 的上下文。这样,当你执行其他 kubectl 命令时,它们将使用该上下文与 Kubernetes 集群进行交互。请确保路径和文件名与实际环境中的配置相匹配。


# token的位置在bootstrap.secret.yaml,如果修改的话到这个文件修改
mkdir -p /root/.kube ; cp /etc/kubernetes/admin.kubeconfig /root/.kube/config

7.2查看集群状态,没问题的话继续后续操作

# 1.28 版本只能查看到一个etcd 属于正常现象
# export ETCDCTL_API=3
# etcdctl --endpoints="192.168.1.43:2379,192.168.1.42:2379,192.168.1.41:2379" --cacert=/etc/kubernetes/pki/etcd/etcd-ca.pem --cert=/etc/kubernetes/pki/etcd/etcd.pem --key=/etc/kubernetes/pki/etcd/etcd-key.pem  endpoint status --write-out=table

kubectl get cs
Warning: v1 ComponentStatus is deprecated in v1.19+
NAME                 STATUS    MESSAGE   ERROR
scheduler            Healthy   ok        
controller-manager   Healthy   ok        
etcd-0               Healthy   ok 

# 写入bootstrap-token
cat > bootstrap.secret.yaml << EOF
apiVersion: v1
kind: Secret
metadata:
  name: bootstrap-token-c8ad9c
  namespace: kube-system
type: bootstrap.kubernetes.io/token
stringData:
  description: "The default bootstrap token generated by 'kubelet '."
  token-id: c8ad9c
  token-secret: 2e4d610cf3e7426e
  usage-bootstrap-authentication: "true"
  usage-bootstrap-signing: "true"
  auth-extra-groups:  system:bootstrappers:default-node-token,system:bootstrappers:worker,system:bootstrappers:ingress
 
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: kubelet-bootstrap
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:node-bootstrapper
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: system:bootstrappers:default-node-token
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: node-autoapprove-bootstrap
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:certificates.k8s.io:certificatesigningrequests:nodeclient
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: system:bootstrappers:default-node-token
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: node-autoapprove-certificate-rotation
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:certificates.k8s.io:certificatesigningrequests:selfnodeclient
subjects:
- apiGroup: rbac.authorization.k8s.io
  kind: Group
  name: system:nodes
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRole
metadata:
  annotations:
    rbac.authorization.kubernetes.io/autoupdate: "true"
  labels:
    kubernetes.io/bootstrapping: rbac-defaults
  name: system:kube-apiserver-to-kubelet
rules:
  - apiGroups:
      - ""
    resources:
      - nodes/proxy
      - nodes/stats
      - nodes/log
      - nodes/spec
      - nodes/metrics
    verbs:
      - "*"
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: system:kube-apiserver
  namespace: ""
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: system:kube-apiserver-to-kubelet
subjects:
  - apiGroup: rbac.authorization.k8s.io
    kind: User
    name: kube-apiserver
EOF
# 切记执行,别忘记!!!
kubectl create -f bootstrap.secret.yaml

8.node节点配置

8.1.在master01上将证书复制到node节点

cd /etc/kubernetes/
 
for NODE in k8s-master02 k8s-master03 k8s-node01 k8s-node02; do ssh $NODE mkdir -p /etc/kubernetes/pki; for FILE in pki/ca.pem pki/ca-key.pem pki/front-proxy-ca.pem bootstrap-kubelet.kubeconfig kube-proxy.kubeconfig; do scp /etc/kubernetes/$FILE $NODE:/etc/kubernetes/${FILE}; done; done

8.2.kubelet配置

注意 : 8.2.1 和 8.2.2 需要和 上方 2.1 和 2.2 对应起来

8.2.1当使用docker作为Runtime

cat > /usr/lib/systemd/system/kubelet.service << EOF

[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=network-online.target firewalld.service cri-docker.service docker.socket containerd.service
Wants=network-online.target
Requires=docker.socket containerd.service

[Service]
ExecStart=/usr/local/bin/kubelet \\
    --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig  \\
    --kubeconfig=/etc/kubernetes/kubelet.kubeconfig \\
    --config=/etc/kubernetes/kubelet-conf.yml \\
    --container-runtime-endpoint=unix:///run/cri-dockerd.sock  \\
    --node-labels=node.kubernetes.io/node= 


[Install]
WantedBy=multi-user.target
EOF

# 这是一个表示 Kubernetes Kubelet 服务的 systemd 单位文件示例。下面是对每个节([Unit]、[Service]、[Install])的详细解释:
# 
# [Unit]
# 
# Description=Kubernetes Kubelet:指定了此单位文件对应的服务描述信息为 "Kubernetes Kubelet"。
# Documentation=...:指定了对该服务的文档链接。
# - After: 说明该服务在哪些其他服务之后启动,这里是在网络在线、firewalld服务和containerd服务后启动。
# - Wants: 说明该服务想要的其他服务,这里是网络在线服务。
# - Requires: 说明该服务需要的其他服务,这里是docker.socket和containerd.service。
# [Service]
# 
# ExecStart=/usr/local/bin/kubelet ...:指定了启动 Kubelet 服务的命令和参数。这里使用的是 /usr/local/bin/kubelet 命令,并传递了一系列参数来配置 Kubelet 的运行。这些参数包括:
# --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig:指定了用于引导 kubelet 的 kubeconfig 文件的路径和名称。
# --kubeconfig=/etc/kubernetes/kubelet.kubeconfig:指定了 kubelet 的 kubeconfig 文件的路径和名称。
# --config=/etc/kubernetes/kubelet-conf.yml:指定了 kubelet 的配置文件的路径和名称。
# --container-runtime-endpoint=unix:///run/cri-dockerd.sock:指定了容器运行时接口的端点地址,这里使用的是 Docker 运行时(cri-dockerd)的 UNIX 套接字。
# --node-labels=node.kubernetes.io/node=:指定了节点的标签。这里的示例只给节点添加了一个简单的标签 node.kubernetes.io/node=。
# [Install]
# 
# WantedBy=multi-user.target:指定了在 multi-user.target 被启动时,该服务应该被启用。
# 通过这个单位文件,你可以配置 Kubelet 服务的启动参数,指定相关的配置文件和凭证文件,以及定义节点的标签。请确认路径和文件名与你的实际环境中的配置相匹配。


# IPv6示例
# 若不使用IPv6那么忽略此项即可
# 下方 --node-ip 更换为每个节点的IP即可
cat > /usr/lib/systemd/system/kubelet.service << EOF
[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=network-online.target firewalld.service cri-docker.service docker.socket containerd.service
Wants=network-online.target
Requires=docker.socket containerd.service

[Service]
ExecStart=/usr/local/bin/kubelet \\
    --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig  \\
    --kubeconfig=/etc/kubernetes/kubelet.kubeconfig \\
    --config=/etc/kubernetes/kubelet-conf.yml \\
    --container-runtime-endpoint=unix:///run/cri-dockerd.sock  \\
    --node-labels=node.kubernetes.io/node=   \\
    --node-ip=192.168.1.41,2408:822a:245:8c01::fab
[Install]
WantedBy=multi-user.target
EOF

8.2.2当使用Containerd作为Runtime (推荐)

mkdir -p /var/lib/kubelet /var/log/kubernetes /etc/systemd/system/kubelet.service.d /etc/kubernetes/manifests/

# 所有k8s节点配置kubelet service
cat > /usr/lib/systemd/system/kubelet.service << EOF

[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=network-online.target firewalld.service containerd.service
Wants=network-online.target
Requires=containerd.service

[Service]
ExecStart=/usr/local/bin/kubelet \\
    --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig  \\
    --kubeconfig=/etc/kubernetes/kubelet.kubeconfig \\
    --config=/etc/kubernetes/kubelet-conf.yml \\
    --container-runtime-endpoint=unix:///run/containerd/containerd.sock  \\
    --node-labels=node.kubernetes.io/node=

[Install]
WantedBy=multi-user.target
EOF

# 这是一个表示 Kubernetes Kubelet 服务的 systemd 单位文件示例。与之前相比,添加了 After 和 Requires 字段来指定依赖关系。
# 
# [Unit]
# 
# Description=Kubernetes Kubelet:指定了此单位文件对应的服务描述信息为 "Kubernetes Kubelet"。
# Documentation=...:指定了对该服务的文档链接。
# - After: 说明该服务在哪些其他服务之后启动,这里是在网络在线、firewalld服务和containerd服务后启动。
# - Wants: 说明该服务想要的其他服务,这里是网络在线服务。
# - Requires: 说明该服务需要的其他服务,这里是docker.socket和containerd.service。
# [Service]
# 
# ExecStart=/usr/local/bin/kubelet ...:指定了启动 Kubelet 服务的命令和参数,与之前的示例相同。
# --container-runtime-endpoint=unix:///run/containerd/containerd.sock:修改了容器运行时接口的端点地址,将其更改为使用 containerd 运行时(通过 UNIX 套接字)。
# [Install]
# 
# WantedBy=multi-user.target:指定了在 multi-user.target 被启动时,该服务应该被启用。
# 通过这个单位文件,你可以配置 Kubelet 服务的启动参数,并指定了它依赖的 containerd 服务。确保路径和文件名与你实际环境中的配置相匹配。



# IPv6示例
# 若不使用IPv6那么忽略此项即可
# 下方 --node-ip 更换为每个节点的IP即可
cat > /usr/lib/systemd/system/kubelet.service << EOF

[Unit]
Description=Kubernetes Kubelet
Documentation=https://github.com/kubernetes/kubernetes
After=network-online.target firewalld.service containerd.service
Wants=network-online.target
Requires=containerd.service

[Service]
ExecStart=/usr/local/bin/kubelet \\
    --bootstrap-kubeconfig=/etc/kubernetes/bootstrap-kubelet.kubeconfig  \\
    --kubeconfig=/etc/kubernetes/kubelet.kubeconfig \\
    --config=/etc/kubernetes/kubelet-conf.yml \\
    --container-runtime-endpoint=unix:///run/containerd/containerd.sock  \\
    --node-labels=node.kubernetes.io/node=  \\
    --node-ip=192.168.1.41,2408:822a:245:8c01::fab
[Install]
WantedBy=multi-user.target
EOF

8.2.3所有k8s节点创建kubelet的配置文件

cat > /etc/kubernetes/kubelet-conf.yml <

8.2.4启动kubelet

systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now kubelet.service
# 启用并立即启动kubelet.service单元。kubelet.service是kubelet守护进程的systemd服务单元。

systemctl restart kubelet.service
# 重启kubelet.service单元,即重新启动kubelet守护进程。

systemctl status kubelet.service
# kubelet.service单元的当前状态,包括运行状态、是否启用等信息。

8.2.5查看集群

[root@k8s-master01 ~]# kubectl  get node
NAME           STATUS   ROLES    AGE   VERSION
k8s-master01   Ready       16s   v1.30.1
k8s-master02   Ready       13s   v1.30.1
k8s-master03   Ready       12s   v1.30.1
k8s-node01     Ready       10s   v1.30.1
k8s-node02     Ready       9s    v1.30.1
[root@k8s-master01 ~]#

8.2.6查看容器运行时

[root@k8s-master01 ~]# kubectl describe node | grep Runtime
  Container Runtime Version:  containerd://1.7.17
  Container Runtime Version:  containerd://1.7.17
  Container Runtime Version:  containerd://1.7.17
  Container Runtime Version:  containerd://1.7.17
  Container Runtime Version:  containerd://1.7.17
[root@k8s-master01 ~]# kubectl describe node | grep Runtime
  Container Runtime Version:  docker://26.1.3
  Container Runtime Version:  docker://26.1.3
  Container Runtime Version:  docker://26.1.3
  Container Runtime Version:  docker://26.1.3
  Container Runtime Version:  docker://26.1.3

8.3.kube-proxy配置

8.3.1将kubeconfig发送至其他节点

# master-1执行
for NODE in k8s-master02 k8s-master03 k8s-node01 k8s-node02; do scp /etc/kubernetes/kube-proxy.kubeconfig $NODE:/etc/kubernetes/kube-proxy.kubeconfig; done

8.3.2所有k8s节点添加kube-proxy的service文件

cat >  /usr/lib/systemd/system/kube-proxy.service << EOF
[Unit]
Description=Kubernetes Kube Proxy
Documentation=https://github.com/kubernetes/kubernetes
After=network.target

[Service]
ExecStart=/usr/local/bin/kube-proxy \\
  --config=/etc/kubernetes/kube-proxy.yaml \\
  --cluster-cidr=172.16.0.0/12,fc00:2222::/112 \\
  --v=2
Restart=always
RestartSec=10s

[Install]
WantedBy=multi-user.target

EOF

# 这是一个 systemd 服务单元文件的示例,用于配置 Kubernetes Kube Proxy 服务。下面是对其中一些字段的详细解释:
# 
# [Unit]
# 
# Description: 描述了该服务单元的用途,这里是 Kubernetes Kube Proxy。
# Documentation: 指定了该服务单元的文档地址,即 https://github.com/kubernetes/kubernetes。
# After: 指定该服务单元应在 network.target(网络目标)之后启动。
# [Service]
# 
# ExecStart: 指定了启动 Kube Proxy 服务的命令。通过 /usr/local/bin/kube-proxy 命令启动,并指定了配置文件的路径为 /etc/kubernetes/kube-proxy.yaml,同时指定了日志级别为 2。
# Restart: 配置了服务在失败或退出后自动重启。
# RestartSec: 配置了重启间隔,这里是每次重启之间的等待时间为 10 秒。
# [Install]
# 
# WantedBy: 指定了该服务单元的安装目标为 multi-user.target(多用户目标),表示该服务将在多用户模式下启动。
# 通过配置这些字段,你可以启动和管理 Kubernetes Kube Proxy 服务。请注意,你需要根据实际情况修改 ExecStart 中的路径和文件名,确保与你的环境一致。另外,可以根据需求修改其他字段的值,以满足你的特定要求。

8.3.3所有k8s节点添加kube-proxy的配置

cat > /etc/kubernetes/kube-proxy.yaml << EOF
apiVersion: kubeproxy.config.k8s.io/v1alpha1
bindAddress: 0.0.0.0
clientConnection:
  acceptContentTypes: ""
  burst: 10
  contentType: application/vnd.kubernetes.protobuf
  kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
  qps: 5
clusterCIDR: 172.16.0.0/12,fc00:2222::/112
configSyncPeriod: 15m0s
conntrack:
  max: null
  maxPerCore: 32768
  min: 131072
  tcpCloseWaitTimeout: 1h0m0s
  tcpEstablishedTimeout: 24h0m0s
enableProfiling: false
healthzBindAddress: 0.0.0.0:10256
hostnameOverride: ""
iptables:
  masqueradeAll: false
  masqueradeBit: 14
  minSyncPeriod: 0s
  syncPeriod: 30s
ipvs:
  masqueradeAll: true
  minSyncPeriod: 5s
  scheduler: "rr"
  syncPeriod: 30s
kind: KubeProxyConfiguration
metricsBindAddress: 127.0.0.1:10249
mode: "ipvs"
nodePortAddresses: null
oomScoreAdj: -999
portRange: ""
udpIdleTimeout: 250ms
EOF

# 这是一个Kubernetes的kube-proxy组件配置文件示例。以下是每个配置项的详细解释:
# 
# 1. apiVersion: kubeproxy.config.k8s.io/v1alpha1
#    - 指定该配置文件的API版本。
# 
# 2. bindAddress: 0.0.0.0
#    - 指定kube-proxy使用的监听地址。0.0.0.0表示监听所有网络接口。
# 
# 3. clientConnection:
#    - 客户端连接配置项。
# 
#    a. acceptContentTypes: ""
#       - 指定接受的内容类型。
# 
#    b. burst: 10
#       - 客户端请求超出qps设置时的最大突发请求数。
# 
#    c. contentType: application/vnd.kubernetes.protobuf
#       - 指定客户端请求的内容类型。
# 
#    d. kubeconfig: /etc/kubernetes/kube-proxy.kubeconfig
#       - kube-proxy使用的kubeconfig文件路径。
# 
#    e. qps: 5
#       - 每秒向API服务器发送的请求数量。
# 
# 4. clusterCIDR: 172.16.0.0/12,fc00:2222::/112
#    - 指定集群使用的CIDR范围,用于自动分配Pod IP。
# 
# 5. configSyncPeriod: 15m0s
#    - 指定kube-proxy配置同步到节点的频率。
# 
# 6. conntrack:
#    - 连接跟踪设置。
# 
#    a. max: null
#       - 指定连接跟踪的最大值。
# 
#    b. maxPerCore: 32768
#       - 指定每个核心的最大连接跟踪数。
# 
#    c. min: 131072
#       - 指定最小的连接跟踪数。
# 
#    d. tcpCloseWaitTimeout: 1h0m0s
#       - 指定处于CLOSE_WAIT状态的TCP连接的超时时间。
# 
#    e. tcpEstablishedTimeout: 24h0m0s
#       - 指定已建立的TCP连接的超时时间。
# 
# 7. enableProfiling: false
#    - 是否启用性能分析。
# 
# 8. healthzBindAddress: 0.0.0.0:10256
#    - 指定健康检查监听地址和端口。
# 
# 9. hostnameOverride: ""
#    - 指定覆盖默认主机名的值。
# 
# 10. iptables:
#     - iptables设置。
# 
#     a. masqueradeAll: false
#        - 是否对所有流量使用IP伪装。
# 
#     b. masqueradeBit: 14
#        - 指定伪装的Bit标记。
# 
#     c. minSyncPeriod: 0s
#        - 指定同步iptables规则的最小间隔。
# 
#     d. syncPeriod: 30s
#        - 指定同步iptables规则的时间间隔。
# 
# 11. ipvs:
#     - ipvs设置。
# 
#     a. masqueradeAll: true
#        - 是否对所有流量使用IP伪装。
# 
#     b. minSyncPeriod: 5s
#        - 指定同步ipvs规则的最小间隔。
# 
#     c. scheduler: "rr"
#        - 指定ipvs默认使用的调度算法。
# 
#     d. syncPeriod: 30s
#        - 指定同步ipvs规则的时间间隔。
# 
# 12. kind: KubeProxyConfiguration
#     - 指定该配置文件的类型。
# 
# 13. metricsBindAddress: 127.0.0.1:10249
#     - 指定指标绑定的地址和端口。
# 
# 14. mode: "ipvs"
#     - 指定kube-proxy的模式。这里指定为ipvs,使用IPVS代理模式。
# 
# 15. nodePortAddresses: null
#     - 指定可用于NodePort的网络地址。
# 
# 16. oomScoreAdj: -999
#     - 指定kube-proxy的OOM优先级。
# 
# 17. portRange: ""
#     - 指定可用于服务端口范围。
# 
# 18. udpIdleTimeout: 250ms
#     - 指定UDP连接的空闲超时时间。

8.3.4启动kube-proxy

 systemctl daemon-reload
# 用于重新加载systemd管理的单位文件。当你新增或修改了某个单位文件(如.service文件、.socket文件等),需要运行该命令来刷新systemd对该文件的配置。

systemctl enable --now kube-proxy.service
# 启用并立即启动kube-proxy.service单元。kube-proxy.service是kube-proxy守护进程的systemd服务单元。

systemctl restart kube-proxy.service
# 重启kube-proxy.service单元,即重新启动kube-proxy守护进程。

systemctl status kube-proxy.service
# kube-proxy.service单元的当前状态,包括运行状态、是否启用等信息。

9.安装网络插件

注意 9.1 和 9.2 二选其一即可,建议在此处创建好快照后在进行操作,后续出问题可以回滚

** centos7 要升级libseccomp 不然 无法安装网络插件**

# https://github.com/opencontainers/runc/releases
# 升级runc
# wget https://mirrors.chenby.cn/https://github.com/opencontainers/runc/releases/download/v1.1.12/runc.amd64

install -m 755 runc.amd64 /usr/local/sbin/runc
cp -p /usr/local/sbin/runc  /usr/local/bin/runc
cp -p /usr/local/sbin/runc  /usr/bin/runc

#查看当前版本
[root@k8s-master-1 ~]# rpm -qa | grep libseccomp
libseccomp-2.5.2-2.el9.x86_64

#下载高于2.4以上的包
# yum -y install http://rpmfind.net/linux/centos/8-stream/BaseOS/x86_64/os/Packages/libseccomp-2.5.1-1.el8.x86_64.rpm
# 清华源
# yum -y install https://mirrors.tuna.tsinghua.edu.cn/centos/8-stream/BaseOS/x86_64/os/Packages/libseccomp-2.5.1-1.el8.x86_64.rpm


9.1安装Calico

9.1.1更改calico网段

wget https://mirrors.chenby.cn/https://github.com/projectcalico/calico/blob/master/manifests/calico-typha.yaml

cp calico-typha.yaml calico.yaml
cp calico-typha.yaml calico-ipv6.yaml

vim calico.yaml
# calico-config ConfigMap处
    "ipam": {
        "type": "calico-ipam",
    },
    - name: IP
      value: "autodetect"

    - name: CALICO_IPV4POOL_CIDR
      value: "172.16.0.0/12"

# vim calico-ipv6.yaml
# calico-config ConfigMap处
    "ipam": {
        "type": "calico-ipam",
        "assign_ipv4": "true",
        "assign_ipv6": "true"
    },
    - name: IP
      value: "autodetect"

    - name: IP6
      value: "autodetect"

    - name: CALICO_IPV4POOL_CIDR
      value: "172.16.0.0/12"

    - name: CALICO_IPV6POOL_CIDR
      value: "fc00:2222::/112"

    - name: FELIX_IPV6SUPPORT
      value: "true"


# 若docker镜像拉不下来,可以使用国内的仓库
# sed -i "s#docker.io/calico/#m.daocloud.io/docker.io/calico/#g" calico.yaml 
# sed -i "s#docker.io/calico/#m.daocloud.io/docker.io/calico/#g" calico-ipv6.yaml

# sed -i "s#m.daocloud.io/docker.io/calico/#docker.io/calico/#g" calico.yaml 
# sed -i "s#m.daocloud.io/docker.io/calico/#docker.io/calico/#g" calico-ipv6.yaml

# 本地没有公网 IPv6 使用 calico.yaml
kubectl apply -f calico.yaml

# 本地有公网 IPv6 使用 calico-ipv6.yaml 
# kubectl apply -f calico-ipv6.yaml 

9.1.2查看容器状态

# calico 初始化会很慢 需要耐心等待一下,大约十分钟左右
[root@k8s-master01 ~]# kubectl  get pod -A
NAMESPACE     NAME                                     READY   STATUS    RESTARTS   AGE
kube-system   calico-kube-controllers-57cf4498-d92w9   1/1     Running   0          114s
kube-system   calico-node-8m7mr                        1/1     Running   0          114s
kube-system   calico-node-g6nk9                        1/1     Running   0          114s
kube-system   calico-node-g76dc                        1/1     Running   0          114s
kube-system   calico-node-h4p27                        1/1     Running   0          114s
kube-system   calico-node-jrlcj                        1/1     Running   0          114s
kube-system   calico-typha-7746b44b78-8hf9k            1/1     Running   0          114s

9.2 安装cilium

9.2.1 安装helm

# [root@k8s-master01 ~]# curl -fsSL -o get_helm.sh https://raw.githubusercontent.com/helm/helm/main/scripts/get-helm-3
# [root@k8s-master01 ~]# chmod 700 get_helm.sh
# [root@k8s-master01 ~]# ./get_helm.sh

# wget https://mirrors.huaweicloud.com/helm/v3.13.2/helm-v3.13.2-linux-amd64.tar.gz
tar xvf helm-*-linux-amd64.tar.gz
cp linux-amd64/helm /usr/local/bin/

9.2.2 安装cilium

# 添加源
helm repo add cilium https://helm.cilium.io

# 修改为国内源
helm pull cilium/cilium
tar xvf cilium-*.tgz
cd cilium/
sed -i "s#quay.io/#quay.dockerproxy.com/#g" values.yaml

# 默认参数安装
helm install  cilium ./cilium/ -n kube-system

# 启用ipv6
# helm install cilium ./cilium/ --namespace kube-system --set ipv6.enabled=true

# 启用路由信息和监控插件
# helm install cilium ./cilium/ --namespace kube-system --set hubble.relay.enabled=true --set hubble.ui.enabled=true --set prometheus.enabled=true --set operator.prometheus.enabled=true --set hubble.enabled=true --set hubble.metrics.enabled="{dns,drop,tcp,flow,port-distribution,icmp,http}" 

9.2.3 查看

[root@k8s-master01 ~]# kubectl  get pod -A | grep cil
NAMESPACE     NAME                               READY   STATUS    RESTARTS   AGE
kube-system   cilium-2tnfb                       1/1     Running   0          60s
kube-system   cilium-5tgcb                       1/1     Running   0          60s
kube-system   cilium-6shf5                       1/1     Running   0          60s
kube-system   cilium-ccbcx                       1/1     Running   0          60s
kube-system   cilium-cppft                       1/1     Running   0          60s
kube-system   cilium-operator-675f685d59-7q27q   1/1     Running   0          60s
kube-system   cilium-operator-675f685d59-kwmqz   1/1     Running   0          60s
[root@k8s-master01 ~]#

9.2.4 下载专属监控面板

安装时候没有创建 监控可以忽略

[root@k8s-master01 yaml]# wget https://mirrors.chenby.cn/https://raw.githubusercontent.com/cilium/cilium/1.12.1/examples/kubernetes/addons/prometheus/monitoring-example.yaml

[root@k8s-master01 yaml]# sed -i "s#docker.io/#m.daocloud.io/docker.io/#g" monitoring-example.yaml

[root@k8s-master01 yaml]# kubectl  apply -f monitoring-example.yaml
namespace/cilium-monitoring created
serviceaccount/prometheus-k8s created
configmap/grafana-config created
configmap/grafana-cilium-dashboard created
configmap/grafana-cilium-operator-dashboard created
configmap/grafana-hubble-dashboard created
configmap/prometheus created
clusterrole.rbac.authorization.k8s.io/prometheus created
clusterrolebinding.rbac.authorization.k8s.io/prometheus created
service/grafana created
service/prometheus created
deployment.apps/grafana created
deployment.apps/prometheus created
[root@k8s-master01 yaml]#

9.2.5 修改为NodePort

安装时候没有创建 监控可以忽略

[root@k8s-master01 yaml]# kubectl  edit svc  -n kube-system hubble-ui
service/hubble-ui edited
[root@k8s-master01 yaml]#
[root@k8s-master01 yaml]# kubectl  edit svc  -n cilium-monitoring grafana
service/grafana edited
[root@k8s-master01 yaml]#
[root@k8s-master01 yaml]# kubectl  edit svc  -n cilium-monitoring prometheus
service/prometheus edited
[root@k8s-master01 yaml]#

type: NodePort

9.2.6 查看端口

安装时候没有创建 监控可以忽略

[root@k8s-master01 yaml]# kubectl get svc -A | grep monit
cilium-monitoring   grafana                NodePort    10.100.250.17            3000:30707/TCP           15m
cilium-monitoring   prometheus             NodePort    10.100.131.243           9090:31155/TCP           15m
[root@k8s-master01 yaml]#
[root@k8s-master01 yaml]# kubectl get svc -A | grep hubble
kube-system         hubble-metrics         ClusterIP   None                     9965/TCP                 5m12s
kube-system         hubble-peer            ClusterIP   10.100.150.29            443/TCP                  5m12s
kube-system         hubble-relay           ClusterIP   10.109.251.34            80/TCP                   5m12s
kube-system         hubble-ui              NodePort    10.102.253.59            80:31219/TCP             5m12s
[root@k8s-master01 yaml]#

9.2.7 访问

安装时候没有创建 监控可以忽略

http://192.168.1.41:30707
http://192.168.1.41:31155
http://192.168.1.41:31219

10.安装CoreDNS

10.1以下步骤只在master01操作

10.1.1修改文件

# 下载tgz包
helm repo add coredns https://coredns.github.io/helm
helm pull coredns/coredns
tar xvf coredns-*.tgz
cd coredns/

# 修改IP地址
vim values.yaml
cat values.yaml | grep clusterIP:
clusterIP: "10.96.0.10"

# 示例
---
service:
# clusterIP: ""
# clusterIPs: []
# loadBalancerIP: ""
# externalIPs: []
# externalTrafficPolicy: ""
# ipFamilyPolicy: ""
  # The name of the Service
  # If not set, a name is generated using the fullname template
  clusterIP: "10.96.0.10"
  name: ""
  annotations: {}
---

# 修改为国内源
sed -i "s#registry.k8s.io/#k8s.dockerproxy.com/#g" values.yaml

# 默认参数安装
helm install  coredns ./coredns/ -n kube-system

11.安装Metrics Server

11.1以下步骤只在master01操作

11.1.1安装Metrics-server

在新版的Kubernetes中系统资源的采集均使用Metrics-server,可以通过Metrics采集节点和Pod的内存、磁盘、CPU和网络的使用率

# 下载 
wget https://mirrors.chenby.cn/https://github.com/kubernetes-sigs/metrics-server/releases/latest/download/components.yaml

# 修改配置
vim components.yaml

---
# 1
	- args:
        - --cert-dir=/tmp
        - --kubelet-preferred-address-types=InternalIP,ExternalIP,Hostname
        - --kubelet-use-node-status-port
        - --metric-resolution=15s
        - --kubelet-insecure-tls
        - --requestheader-client-ca-file=/etc/kubernetes/pki/front-proxy-ca.pem
        - --requestheader-username-headers=X-Remote-User
        - --requestheader-group-headers=X-Remote-Group
        - --requestheader-extra-headers-prefix=X-Remote-Extra-

# 2
        volumeMounts:
        - mountPath: /tmp
          name: tmp-dir
        - name: ca-ssl
          mountPath: /etc/kubernetes/pki

# 3
      volumes:
      - emptyDir: {}
        name: tmp-dir
      - name: ca-ssl
        hostPath:
          path: /etc/kubernetes/pki
---


# 修改为国内源 docker源可选
sed -i "s#registry.k8s.io/#k8s.dockerproxy.com/#g" *.yaml

# 执行部署
kubectl apply -f components.yaml

11.1.2稍等片刻查看状态

kubectl  top node
NAME           CPU(cores)   CPU%   MEMORY(bytes)   MEMORY%   
k8s-master01   268m         6%     2318Mi          60%       
k8s-master02   147m         3%     1802Mi          47%       
k8s-master03   147m         3%     1820Mi          47%       
k8s-node01     62m          1%     1152Mi          30%       
k8s-node02     63m          1%     1114Mi          29%  

12.集群验证

12.1部署pod资源

cat<

12.2用pod解析默认命名空间中的kubernetes

# 查看name
kubectl get svc
NAME         TYPE        CLUSTER-IP   EXTERNAL-IP   PORT(S)   AGE
kubernetes   ClusterIP   10.96.0.1            443/TCP   17h

# 进行解析
kubectl exec  busybox -n default -- nslookup kubernetes
3Server:    10.96.0.10
Address 1: 10.96.0.10 kube-dns.kube-system.svc.cluster.local

Name:      kubernetes
Address 1: 10.96.0.1 kubernetes.default.svc.cluster.local

12.3测试跨命名空间是否可以解析

# 查看有那些name
kubectl  get svc -A
NAMESPACE     NAME              TYPE        CLUSTER-IP      EXTERNAL-IP   PORT(S)         AGE
default       kubernetes        ClusterIP   10.96.0.1               443/TCP         76m
kube-system   calico-typha      ClusterIP   10.105.100.82           5473/TCP        35m
kube-system   coredns-coredns   ClusterIP   10.96.0.10              53/UDP,53/TCP   8m14s
kube-system   metrics-server    ClusterIP   10.105.60.31            443/TCP         109s

# 进行解析
kubectl exec  busybox -n default -- nslookup coredns.kube-system
Server:    10.96.0.10
Address 1: 10.96.0.10 coredns-coredns.kube-system.svc.cluster.local

Name:      coredns-coredns.kube-system
Address 1: 10.96.0.10 coredns-coredns.kube-system.svc.cluster.local
[root@k8s-master01 metrics-server]# 

12.4每个节点都必须要能访问Kubernetes的kubernetes svc 443和kube-dns的service 53

telnet 10.96.0.1 443
Trying 10.96.0.1...
Connected to 10.96.0.1.
Escape character is '^]'.

 telnet 10.96.0.10 53
Trying 10.96.0.10...
Connected to 10.96.0.10.
Escape character is '^]'.

curl 10.96.0.10:53
curl: (52) Empty reply from server

12.5Pod和Pod之前要能通

kubectl get po -owide
NAME      READY   STATUS    RESTARTS   AGE   IP              NODE         NOMINATED NODE   READINESS GATES
busybox   1/1     Running   0          17m   172.27.14.193   k8s-node02              

kubectl get po -n kube-system -owide
NAME                                       READY   STATUS    RESTARTS   AGE     IP               NODE           NOMINATED NODE   READINESS GATES
calico-kube-controllers-76754ff848-pw4xg   1/1     Running   0          38m     172.25.244.193   k8s-master01              
calico-node-97m55                          1/1     Running   0          38m     192.168.1.44     k8s-node01                
calico-node-hlz7j                          1/1     Running   0          38m     192.168.1.42     k8s-master02              
calico-node-jtlck                          1/1     Running   0          38m     192.168.1.43     k8s-master03              
calico-node-lxfkf                          1/1     Running   0          38m     192.168.1.45     k8s-node02                
calico-node-t667x                          1/1     Running   0          38m     192.168.1.41     k8s-master01              
calico-typha-59d75c5dd4-gbhfp              1/1     Running   0          38m     192.168.1.45     k8s-node02                
coredns-coredns-c5c6d4d9b-bd829            1/1     Running   0          10m     172.25.92.65     k8s-master02              
metrics-server-7c8b55c754-w7q8v            1/1     Running   0          3m56s   172.17.125.3     k8s-node01                

# 进入busybox ping其他节点上的pod

kubectl exec -ti busybox -- sh
/ # ping 192.168.1.44
PING 192.168.1.44 (192.168.1.44): 56 data bytes
64 bytes from 192.168.1.44: seq=0 ttl=63 time=0.358 ms
64 bytes from 192.168.1.44: seq=1 ttl=63 time=0.668 ms
64 bytes from 192.168.1.44: seq=2 ttl=63 time=0.637 ms
64 bytes from 192.168.1.44: seq=3 ttl=63 time=0.624 ms
64 bytes from 192.168.1.44: seq=4 ttl=63 time=0.907 ms

# 可以连通证明这个pod是可以跨命名空间和跨主机通信的

12.6创建三个副本,可以看到3个副本分布在不同的节点上(用完可以删了)

cat<

13.安装dashboard

# 添加源信息
helm repo add kubernetes-dashboard https://kubernetes.github.io/dashboard/

# 默认参数安装
helm upgrade --install kubernetes-dashboard kubernetes-dashboard/kubernetes-dashboard --create-namespace --namespace kube-system

# 我的集群使用默认参数安装 kubernetes-dashboard-kong 出现异常 8444 端口占用
# 使用下面的命令进行安装,在安装时关闭kong.tls功能
helm upgrade --install kubernetes-dashboard kubernetes-dashboard/kubernetes-dashboard --namespace kube-system --set kong.admin.tls.enabled=false

13.1更改dashboard的svc为NodePort,如果已是请忽略

kubectl edit svc  -n kube-system kubernetes-dashboard-kong-proxy
  type: NodePort

13.2查看端口号

[root@k8s-master01 ~]# kubectl get svc kubernetes-dashboard-kong-proxy -n kube-system
NAME                              TYPE       CLUSTER-IP     EXTERNAL-IP   PORT(S)         AGE
kubernetes-dashboard-kong-proxy   NodePort   10.96.247.74           443:31817/TCP   2m29s
[root@k8s-master01 ~]# 

13.3创建token

cat > dashboard-user.yaml << EOF
apiVersion: v1
kind: ServiceAccount
metadata:
  name: admin-user
  namespace: kube-system
---
apiVersion: rbac.authorization.k8s.io/v1
kind: ClusterRoleBinding
metadata:
  name: admin-user
roleRef:
  apiGroup: rbac.authorization.k8s.io
  kind: ClusterRole
  name: cluster-admin
subjects:
- kind: ServiceAccount
  name: admin-user
  namespace: kube-system
EOF

kubectl  apply -f dashboard-user.yaml

# 创建token
kubectl -n kube-system create token admin-user
eyJhbGciOiJSUzI1NiIsImtpZCI6ImItMjYwYTB5RkxuODNrcGNzel8xUmlfejhIbXJKVmdZc0FGal8zaE5YNWcifQ.eyJhdWQiOlsiaHR0cHM6Ly9rdWJlcm5ldGVzLmRlZmF1bHQuc3ZjLmNsdXN0ZXIubG9jYWwiXSwiZXhwIjoxNzE2NzIyNDkwLCJpYXQiOjE3MTY3MTg4OTAsImlzcyI6Imh0dHBzOi8va3ViZXJuZXRlcy5kZWZhdWx0LnN2Yy5jbHVzdGVyLmxvY2FsIiwianRpIjoiMDEyOWU4MDgtMGQzYS00N2FlLWI3YzItYWUxN2ZkNGZiZDc1Iiwia3ViZXJuZXRlcy5pbyI6eyJuYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsInNlcnZpY2VhY2NvdW50Ijp7Im5hbWUiOiJhZG1pbi11c2VyIiwidWlkIjoiNmYyNDQ2MGUtNDc5NC00ZjRjLWIzNzAtZmUyZjE0MGNjN2ZmIn19LCJuYmYiOjE3MTY3MTg4OTAsInN1YiI6InN5c3RlbTpzZXJ2aWNlYWNjb3VudDprdWJlLXN5c3RlbTphZG1pbi11c2VyIn0.dhdhzBac12QYCeXK6oj1BhBQ4hn6-e5c8tQie9WYKXvqp1hWgQ44hQAwTASaZ3aZPlfCsEHIoUZxE9F3ourHTy8-D8HyATmxhAGaEFPHrRdfLrhvtdL1HGqPcX2FvH4aPCGGMZ6iX0lUIoWqf-2K7AvtvagKg9Na_NRufCDDCAmpt0heJHjntRCODlATy4ar82KEHShay4y1ZL2a5lD-vcOihEYBq4giZzNq-0lCAbbO-OC3b4vCYeAC6PN4DXDLqnvnVRfURKJvBjvPYgBmeP8q8hinaHLELdsB7mdelY-KnmV7G-ljtNYLAgHzF2pkIdv2AUiCaVuS-Tnc0f9D2g

13.4创建长期token

cat > dashboard-user-token.yaml << EOF
apiVersion: v1
kind: Secret
metadata:
  name: admin-user
  namespace: kube-system
  annotations:
    kubernetes.io/service-account.name: "admin-user"   
type: kubernetes.io/service-account-token  
EOF

kubectl  apply -f dashboard-user-token.yaml

# 查看密码
kubectl get secret admin-user -n kube-system -o jsonpath={".data.token"} | base64 -d

eyJhbGciOiJSUzI1NiIsImtpZCI6ImItMjYwYTB5RkxuODNrcGNzel8xUmlfejhIbXJKVmdZc0FGal8zaE5YNWcifQ.eyJpc3MiOiJrdWJlcm5ldGVzL3NlcnZpY2VhY2NvdW50Iiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9uYW1lc3BhY2UiOiJrdWJlLXN5c3RlbSIsImt1YmVybmV0ZXMuaW8vc2VydmljZWFjY291bnQvc2VjcmV0Lm5hbWUiOiJhZG1pbi11c2VyIiwia3ViZXJuZXRlcy5pby9zZXJ2aWNlYWNjb3VudC9zZXJ2aWNlLWFjY291bnQubmFtZSI6ImFkbWluLXVzZXIiLCJrdWJlcm5ldGVzLmlvL3NlcnZpY2VhY2NvdW50L3NlcnZpY2UtYWNjb3VudC51aWQiOiI2ZjI0NDYwZS00Nzk0LTRmNGMtYjM3MC1mZTJmMTQwY2M3ZmYiLCJzdWIiOiJzeXN0ZW06c2VydmljZWFjY291bnQ6a3ViZS1zeXN0ZW06YWRtaW4tdXNlciJ9.XBXJkYG0-BMLD-c7GEo6QH8HEu_dYO-9hfZ974t9dOpEdUTbT4JqJmQimfZeVHYAm5cEbEw7vlZaDTjBvvoTxkBNIGe91wsjqrqGzfaqY_z0JNyYRU2XSiCRpTgfoOPYB1_J-Fgqdd3cDBpktaIC-a7BQuU6fo9IF_qHcjOgibmBICJHBrcT-jA_CZ4VBKwu5e_nyj9EnpGZje0aC0NL8-MFOCP_8-Ro9-8W_tc157cxLFioIxU2RvUmh1SmKAl4MWJeXpYTIT7mjngCc6Ap_EclG4wVk0rCjSFZD5bDEpiBwe6nT1olsBQ5W-6cQLhTt8hEgUmNHzDQO-jgqJfAFw

13.5登录dashboard

https://192.168.1.41:31817/

14.ingress安装

14.1执行部署

wget https://mirrors.chenby.cn/https://raw.githubusercontent.com/kubernetes/ingress-nginx/main/deploy/static/provider/cloud/deploy.yaml

# 修改为国内源 docker源可选
sed -i "s#registry.k8s.io/#k8s.dockerproxy.com/#g" *.yaml

cat > backend.yaml << EOF
apiVersion: apps/v1
kind: Deployment
metadata:
  name: default-http-backend
  labels:
    app.kubernetes.io/name: default-http-backend
  namespace: kube-system
spec:
  replicas: 1
  selector:
    matchLabels:
      app.kubernetes.io/name: default-http-backend
  template:
    metadata:
      labels:
        app.kubernetes.io/name: default-http-backend
    spec:
      terminationGracePeriodSeconds: 60
      containers:
      - name: default-http-backend
        image: registry.cn-hangzhou.aliyuncs.com/chenby/defaultbackend-amd64:1.5 
        livenessProbe:
          httpGet:
            path: /healthz
            port: 8080
            scheme: HTTP
          initialDelaySeconds: 30
          timeoutSeconds: 5
        ports:
        - containerPort: 8080
        resources:
          limits:
            cpu: 10m
            memory: 20Mi
          requests:
            cpu: 10m
            memory: 20Mi
---
apiVersion: v1
kind: Service
metadata:
  name: default-http-backend
  namespace: kube-system
  labels:
    app.kubernetes.io/name: default-http-backend
spec:
  ports:
  - port: 80
    targetPort: 8080
  selector:
    app.kubernetes.io/name: default-http-backend
EOF

kubectl  apply -f deploy.yaml 
kubectl  apply -f backend.yaml 


cat > ingress-demo-app.yaml << EOF
apiVersion: apps/v1
kind: Deployment
metadata:
  name: hello-server
spec:
  replicas: 2
  selector:
    matchLabels:
      app: hello-server
  template:
    metadata:
      labels:
        app: hello-server
    spec:
      containers:
      - name: hello-server
        image: registry.cn-hangzhou.aliyuncs.com/lfy_k8s_images/hello-server
        ports:
        - containerPort: 9000
---
apiVersion: apps/v1
kind: Deployment
metadata:
  labels:
    app: nginx-demo
  name: nginx-demo
spec:
  replicas: 2
  selector:
    matchLabels:
      app: nginx-demo
  template:
    metadata:
      labels:
        app: nginx-demo
    spec:
      containers:
      - image: nginx
        name: nginx
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: nginx-demo
  name: nginx-demo
spec:
  selector:
    app: nginx-demo
  ports:
  - port: 8000
    protocol: TCP
    targetPort: 80
---
apiVersion: v1
kind: Service
metadata:
  labels:
    app: hello-server
  name: hello-server
spec:
  selector:
    app: hello-server
  ports:
  - port: 8000
    protocol: TCP
    targetPort: 9000
---
apiVersion: networking.k8s.io/v1
kind: Ingress  
metadata:
  name: ingress-host-bar
spec:
  ingressClassName: nginx
  rules:
  - host: "hello.chenby.cn"
    http:
      paths:
      - pathType: Prefix
        path: "/"
        backend:
          service:
            name: hello-server
            port:
              number: 8000
  - host: "demo.chenby.cn"
    http:
      paths:
      - pathType: Prefix
        path: "/nginx"  
        backend:
          service:
            name: nginx-demo
            port:
              number: 8000
EOF

# 等创建完成后在执行:
kubectl  apply -f ingress-demo-app.yaml 

kubectl  get ingress
NAME               CLASS   HOSTS                            ADDRESS     PORTS   AGE
ingress-host-bar   nginx   hello.chenby.cn,demo.chenby.cn   192.168.1.42   80      7s

14.2过滤查看ingress端口

# 修改为nodeport
kubectl edit svc -n ingress-nginx   ingress-nginx-controller
type: NodePort

[root@hello ~/yaml]# kubectl  get svc -A | grep ingress
ingress-nginx          ingress-nginx-controller             NodePort    10.104.231.36            80:32636/TCP,443:30579/TCP   104s
ingress-nginx          ingress-nginx-controller-admission   ClusterIP   10.101.85.88             443/TCP                      105s
[root@hello ~/yaml]#

15.IPv6测试

#部署应用

cat<        80:30495/TCP   5s
[root@k8s-master01 ~]# 

[root@localhost yaml]# curl -I http://192.168.1.41:30495
HTTP/1.1 200 OK
Server: nginx/1.21.6
Date: Thu, 05 May 2022 10:20:59 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Tue, 25 Jan 2022 15:03:52 GMT
Connection: keep-alive
ETag: "61f01158-267"
Accept-Ranges: bytes

[root@localhost yaml]# 

[root@localhost yaml]# curl -I http://[2409:8a10:9e18:9020::10]:30495
HTTP/1.1 200 OK
Server: nginx/1.21.6
Date: Thu, 05 May 2022 10:20:54 GMT
Content-Type: text/html
Content-Length: 615
Last-Modified: Tue, 25 Jan 2022 15:03:52 GMT
Connection: keep-alive
ETag: "61f01158-267"
Accept-Ranges: bytes

16.污点

# 查看当前污点状态
[root@k8s-master01 ~]# kubectl describe node  | grep Taints
Taints:             
Taints:             
Taints:             
Taints:             
Taints:             

# 设置污点 禁止调度 同时进行驱赶现有的POD
kubectl taint nodes k8s-master01 key1=value1:NoExecute
kubectl taint nodes k8s-master02 key1=value1:NoExecute
kubectl taint nodes k8s-master03 key1=value1:NoExecute

# 取消污点
kubectl taint nodes k8s-master01 key1=value1:NoExecute-
kubectl taint nodes k8s-master02 key1=value1:NoExecute-
kubectl taint nodes k8s-master03 key1=value1:NoExecute-

# 设置污点 禁止调度 不进行驱赶现有的POD
kubectl taint nodes k8s-master01 key1=value1:NoSchedule
kubectl taint nodes k8s-master02 key1=value1:NoSchedule
kubectl taint nodes k8s-master03 key1=value1:NoSchedule

# 取消污点
kubectl taint nodes k8s-master01 key1=value1:NoSchedule-
kubectl taint nodes k8s-master02 key1=value1:NoSchedule-
kubectl taint nodes k8s-master03 key1=value1:NoSchedule-

17.安装命令行自动补全功能

yum install bash-completion -y
source /usr/share/bash-completion/bash_completion
source <(kubectl completion bash)
echo "source <(kubectl completion bash)" >> ~/.bashrc

附录

# 镜像加速器可以使用DaoCloud仓库,替换规则如下
cr.l5d.io/  ===> m.daocloud.io/cr.l5d.io/
docker.elastic.co/  ===> m.daocloud.io/docker.elastic.co/
docker.io/  ===> m.daocloud.io/docker.io/
gcr.io/  ===> m.daocloud.io/gcr.io/
ghcr.io/  ===> m.daocloud.io/ghcr.io/
k8s.gcr.io/  ===> m.daocloud.io/k8s.gcr.io/
mcr.microsoft.com/  ===> m.daocloud.io/mcr.microsoft.com/
nvcr.io/  ===> m.daocloud.io/nvcr.io/
quay.io/  ===> m.daocloud.io/quay.io/
registry.jujucharms.com/  ===> m.daocloud.io/registry.jujucharms.com/
registry.k8s.io/  ===> m.daocloud.io/registry.k8s.io/
registry.opensource.zalan.do/  ===> m.daocloud.io/registry.opensource.zalan.do/
rocks.canonical.com/  ===> m.daocloud.io/rocks.canonical.com/




# 镜像版本要自行查看,因为镜像版本是随时更新的,文档无法做到实时更新

# docker pull 镜像

docker pull registry.cn-hangzhou.aliyuncs.com/chenby/cni:master 
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/node:master
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/kube-controllers:master
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/typha:master
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/coredns:v1.10.0
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/pause:3.6
docker pull registry.cn-hangzhou.aliyuncs.com/chenby/metrics-server:v0.5.2
docker pull kubernetesui/dashboard:v2.7.0
docker pull kubernetesui/metrics-scraper:v1.0.8
docker pull quay.io/cilium/cilium:v1.12.6
docker pull quay.io/cilium/certgen:v0.1.8
docker pull quay.io/cilium/hubble-relay:v1.12.6
docker pull quay.io/cilium/hubble-ui-backend:v0.9.2
docker pull quay.io/cilium/hubble-ui:v0.9.2
docker pull quay.io/cilium/cilium-etcd-operator:v2.0.7
docker pull quay.io/cilium/operator:v1.12.6
docker pull quay.io/cilium/clustermesh-apiserver:v1.12.6
docker pull quay.io/coreos/etcd:v3.5.4
docker pull quay.io/cilium/startup-script:d69851597ea019af980891a4628fb36b7880ec26

# docker 保存镜像
docker save registry.cn-hangzhou.aliyuncs.com/chenby/cni:master -o cni.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/node:master -o node.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/typha:master -o typha.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/kube-controllers:master -o kube-controllers.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/coredns:v1.10.0 -o coredns.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/pause:3.6 -o pause.tar 
docker save registry.cn-hangzhou.aliyuncs.com/chenby/metrics-server:v0.5.2 -o metrics-server.tar 
docker save kubernetesui/dashboard:v2.7.0 -o dashboard.tar 
docker save kubernetesui/metrics-scraper:v1.0.8 -o metrics-scraper.tar 
docker save quay.io/cilium/cilium:v1.12.6 -o cilium.tar 
docker save quay.io/cilium/certgen:v0.1.8 -o certgen.tar 
docker save quay.io/cilium/hubble-relay:v1.12.6 -o hubble-relay.tar 
docker save quay.io/cilium/hubble-ui-backend:v0.9.2 -o hubble-ui-backend.tar 
docker save quay.io/cilium/hubble-ui:v0.9.2 -o hubble-ui.tar 
docker save quay.io/cilium/cilium-etcd-operator:v2.0.7 -o cilium-etcd-operator.tar 
docker save quay.io/cilium/operator:v1.12.6 -o operator.tar 
docker save quay.io/cilium/clustermesh-apiserver:v1.12.6 -o clustermesh-apiserver.tar 
docker save quay.io/coreos/etcd:v3.5.4 -o etcd.tar 
docker save quay.io/cilium/startup-script:d69851597ea019af980891a4628fb36b7880ec26 -o startup-script.tar 

# 传输到各个节点
for NODE in k8s-master01 k8s-master02 k8s-master03 k8s-node01 k8s-node02; do scp -r images/  $NODE:/root/ ; done

# 创建命名空间
ctr ns create k8s.io

# 导入镜像
ctr --namespace k8s.io image import images/cni.tar
ctr --namespace k8s.io image import images/node.tar
ctr --namespace k8s.io image import images/typha.tar
ctr --namespace k8s.io image import images/kube-controllers.tar 
ctr --namespace k8s.io image import images/coredns.tar 
ctr --namespace k8s.io image import images/pause.tar 
ctr --namespace k8s.io image import images/metrics-server.tar 
ctr --namespace k8s.io image import images/dashboard.tar 
ctr --namespace k8s.io image import images/metrics-scraper.tar 
ctr --namespace k8s.io image import images/dashboard.tar 
ctr --namespace k8s.io image import images/metrics-scraper.tar 
ctr --namespace k8s.io image import images/cilium.tar 
ctr --namespace k8s.io image import images/certgen.tar 
ctr --namespace k8s.io image import images/hubble-relay.tar 
ctr --namespace k8s.io image import images/hubble-ui-backend.tar 
ctr --namespace k8s.io image import images/hubble-ui.tar 
ctr --namespace k8s.io image import images/cilium-etcd-operator.tar 
ctr --namespace k8s.io image import images/operator.tar 
ctr --namespace k8s.io image import images/clustermesh-apiserver.tar 
ctr --namespace k8s.io image import images/etcd.tar 
ctr --namespace k8s.io image import images/startup-script.tar 

# pull tar包 解压后
helm pull cilium/cilium

# 查看镜像版本
root@hello:~/cilium# cat values.yaml| grep tag: -C1
  repository: "quay.io/cilium/cilium"
  tag: "v1.12.6"
  pullPolicy: "IfNotPresent"
--
    repository: "quay.io/cilium/certgen"
    tag: "v0.1.8@sha256:4a456552a5f192992a6edcec2febb1c54870d665173a33dc7d876129b199ddbd"
    pullPolicy: "IfNotPresent"
--
      repository: "quay.io/cilium/hubble-relay"
      tag: "v1.12.6"
       # hubble-relay-digest
--
        repository: "quay.io/cilium/hubble-ui-backend"
        tag: "v0.9.2@sha256:a3ac4d5b87889c9f7cc6323e86d3126b0d382933bd64f44382a92778b0cde5d7"
        pullPolicy: "IfNotPresent"
--
        repository: "quay.io/cilium/hubble-ui"
        tag: "v0.9.2@sha256:d3596efc94a41c6b772b9afe6fe47c17417658956e04c3e2a28d293f2670663e"
        pullPolicy: "IfNotPresent"
--
    repository: "quay.io/cilium/cilium-etcd-operator"
    tag: "v2.0.7@sha256:04b8327f7f992693c2cb483b999041ed8f92efc8e14f2a5f3ab95574a65ea2dc"
    pullPolicy: "IfNotPresent"
--
    repository: "quay.io/cilium/operator"
    tag: "v1.12.6"
    # operator-generic-digest
--
    repository: "quay.io/cilium/startup-script"
    tag: "d69851597ea019af980891a4628fb36b7880ec26"
    pullPolicy: "IfNotPresent"
--
    repository: "quay.io/cilium/cilium"
    tag: "v1.12.6"
    # cilium-digest
--
      repository: "quay.io/cilium/clustermesh-apiserver"
      tag: "v1.12.6"
      # clustermesh-apiserver-digest
--
        repository: "quay.io/coreos/etcd"
        tag: "v3.5.4@sha256:795d8660c48c439a7c3764c2330ed9222ab5db5bb524d8d0607cac76f7ba82a3"
        pullPolicy: "IfNotPresent"

关于

https://www.oiox.cn/

https://www.oiox.cn/index.php/start-page.html

CSDN、GitHub、知乎、开源中国、思否、掘金、简书、华为云、阿里云、腾讯云、哔哩哔哩、今日头条、新浪微博、个人博客

全网可搜《小陈运维》

文章主要发布于微信公众号:《Linux运维交流社区》