我们提供安全,免费的手游软件下载!

安卓手机游戏下载_安卓手机软件下载_安卓手机应用免费下载-先锋下载

当前位置: 主页 > 软件教程 > 软件教程

QWen2-72B-Instruct模型安装部署过程

来源:网络 更新时间:2024-08-08 09:33:10

最近在给我们的客户私有化部署我们的 TorchV 系统,客户给的资源足够充裕,借此机会记录下部署千问72B模型的过程,分享给大家!

一、基础信息

  • 操作系统 Ubuntu 22.04.3 LTS

  • GPU: A800(80GB) * 8

  • 内存 :1TB

二、软件信息

Python: 3.10

Pytorch:2.3.0

Transformers:4.43.0

vLLM:0.5.0

cuda: 12.2

模型: QWen2-72B-Instruct

三、安装步骤

1、安装Conda

Conda 是一个开源的包管理系统和环境管理系统,旨在简化软件包的安装、配置和使用

对于Python环境的部署,能够非常方便的切换环境。

可以通过conda官网链接下载安装: https://www.anaconda.com/download#downloads

# 下载
wget https://repo.anaconda.com/archive/Anaconda3-2023.09-0-Linux-x86_64.sh
# 安装
bash Anaconda3-2023.09-0-Linux-x86_64.sh
# 配置环境变量
echo 'export PATH="/path/to/anaconda3/bin:$PATH"' >> ~/.bashrc
source ~/.bashrc

安装完成后,通过命令验证安装是否成功

conda --version

安装完成之后,可以配置镜像源,方便快速下载依赖包

# 配置源

conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/free/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/pkgs/main/
conda config --set show_channel_urls yes


conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/conda-forge/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/msys2/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/bioconda/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/menpo/
conda config --add channels https://mirrors.tuna.tsinghua.edu.cn/anaconda/cloud/pytorch/

conda的相关命令

 # 指定虚拟环境名称为llm,python版本是3.9
 conda create --name llm python=3.9
 # 激活conda新环境
 conda activate llm
 # 查看当前环境列表
 conda env list

2、下载QWen2-72B-Instruct模型

Huggingface: https://huggingface.co/Qwen/Qwen2-72B-Instruct

ModelScope: https://modelscope.cn/models/qwen/Qwen2-72B-Instruct

两个地址都可以下载,下载完成后,将模型文件存放在服务器上。

⚠️ 注意服务器的磁盘空间。

3、安装Pytorch等环境依赖信息

⚠️ 在安装Pytorch时,需要保证和cuda驱动版本保持一致,不然会出现各种莫名其妙的问题

版本选择参考: https://pytorch.org/get-started/locally/

通过conda创建一个新的环境,然后切换后安装依赖包

4、 安装vLLM

vLLM 框架是一个高效的大语言模型 推理和部署服务系统 ,具备以下特性:

  • 高效的内存管理 :通过 PagedAttention 算法, vLLM 实现了对 KV 缓存的高效管理,减少了内存浪费,优化了模型的运行效率。
  • 高吞吐量 vLLM 支持异步处理和连续批处理请求,显著提高了模型推理的吞吐量,加速了文本生成和处理速度。
  • 易用性 vLLM HuggingFace 模型无缝集成,支持多种流行的大型语言模型,简化了模型部署和推理的过程。兼容 OpenAI API 服务器。
  • 分布式推理 :框架支持在多 GPU 环境中进行分布式推理,通过模型并行策略和高效的数据通信,提升了处理大型模型的能力。
  • 开源共享 vLLM 由于其开源的属性,拥有活跃的社区支持,这也便于开发者贡献和改进,共同推动技术发展。

GitHub: https://github.com/vllm-project/vllm

文档: https://docs.vllm.ai/en/latest/

在通过 conda 创建了初始环境后,可以直接通过 pip 进行安装

pip install vllm

更多的安装方式,可以参考官网文档: https://docs.vllm.ai/en/stable/getting_started/installation.html

5、模型验证

可以通过一个python脚本来验证当前的模型是否可用

脚本如下:

# test.py
from vllm import LLM, SamplingParams
from transformers import AutoTokenizer
import os
import json

def get_completion(prompts, model, tokenizer=None, max_tokens=512, temperature=0.8, top_p=0.95, max_model_len=2048):
    stop_token_ids = []
    # 创建采样参数。temperature 控制生成文本的多样性,top_p 控制核心采样的概率
    sampling_params = SamplingParams(temperature=temperature, top_p=top_p, max_tokens=max_tokens, stop_token_ids=stop_token_ids)
    # 初始化 vLLM 推理引擎
    llm = LLM(model=model, tokenizer=tokenizer, max_model_len=max_model_len,trust_remote_code=True)
    outputs = llm.generate(prompts, sampling_params)
    return outputs


if __name__ == "__main__":    
    # 初始化 vLLM 推理引擎
    model='/mnt/soft/models/qwen/Qwen2-72B-Instruct' # 指定模型路径
    # model="qwen/Qwen2-7B-Instruct" # 指定模型名称,自动下载模型
    tokenizer = None
    # 加载分词器后传入vLLM 模型,但不是必要的。
    # tokenizer = AutoTokenizer.from_pretrained(model, use_fast=False) 
    
    text = ["你好,帮我介绍一下什么时大语言模型。",
            "可以给我将一个有趣的童话故事吗?"]

    outputs = get_completion(text, model, tokenizer=tokenizer, max_tokens=512, temperature=1, top_p=1, max_model_len=2048)

    # 输出是一个包含 prompt、生成文本和其他信息的 RequestOutput 对象列表。
    # 打印输出。
    for output in outputs:
        prompt = output.prompt
        generated_text = output.outputs[0].text
        print(f"Prompt: {prompt!r}, Generated text: {generated_text!r}")

在终端执行python脚本,可以看到控制台是否正常输出

python test.py

6、启动服务 & 包装OpenAI格式的接口

验证模型可用后,那么就可以通过vLLM提供的模块,将整个模型服务包装成OpenAI格式的HTTP服务,提供给上层应用使用。

需要注意的参数配置:

  • --model 参数指定模型名称&路径。
  • --served-model-name 指定服务模型的名称。
  • --max-model-len 指定模型的最大长度,如果不指定,那么会从模型配置文件中自动加载,QWen2-72B模型支持最大128K
  • --tensor-parallel-size 指定多个GPU服务运行,QWen2-72B的模型,单卡GPU无法支撑。
  • --gpu-memory-utilization 用于模型执行器的GPU内存分数,范围从0到1。例如,值为0.5意味着GPU内存利用率为50%。如果未指定,将使用 默认值0.9 vllm通过此参数预分配了部分显存,避免模型在调用的时候频繁的申请显存

关于vllm的更多参数,可以参考官方文档: https://docs.vllm.ai/en/stable/models/engine_args.html

这里可以使用 tmux 命令来进行服务的运行。

tmux (Terminal Multiplexer)是一个强大的终端复用器,可以让用户在一个终端窗口中同时使用多个会话。使用 tmux 可以提高工作效率,便于管理长期运行的任务和多任务操作

python3 -m vllm.entrypoints.openai.api_server --model /mnt/torchv/models/Qwen2-72B-Instruct  --served-model-name QWen2-72B-Instruct --tensor-parallel-size 8 --gpu-memory-utilization 0.7

出现端口等信息则代表当前的模型服务启动成功!!!

首先创建一个新会话

tmux new -t llm

进入会话

tmux attach -t llm

启动命令:

python -m xxx

退出当前会话

如果没反应就多试几次

英文输入下 ctrl + b  然后输入d

通过curl命令验证大模型OpenAI接口服务是否可用,脚本如下:

curl http://localhost:8000/v1/chat/completions -H "Content-Type: application/json" -d '{
  "model": "QWen2-72B-Instruct",
  "messages": [
      {
          "role": "user",
          "content": "给我讲一个童话故事"
      }
  ],
  "stream": true,
  "temperature": 0.9,
  "top_p": 0.7,
  "top_k": 20,
  "max_tokens": 512
}'

四、总结

目前的开源生态已经非常成熟了,vLLM这样的工具能够轻松实现对大模型的快速部署,工作效率上大大提升

五、References

官网资源等信息

资源 地址
QWen GitHub: https://github.com/QwenLM/Qwen
Huggingface: https://huggingface.co/Qwen

ModelScope: https://modelscope.cn/organization/qwen?tab=model
docs: https://qwen.readthedocs.io/zh-cn/latest/getting_started/quickstart.html#
Pytorch https://pytorch.org/get-started/locally/
Conda https://www.anaconda.com
vLLM https://docs.vllm.ai/en/latest/getting_started/installation.html

权重文件下载不完全

在本次部署过程中,碰到了下载模型权重文件不完整的情况,导致通过 vLLM 部署不起来,可以通过Linux的命令 sha256sum 工具来对模型权重文件进行检查,对比网站上的模型权重文件的sha256是否一致,如果不一致,需要重新下载安装

命令如下:

sha256sum your_local_file